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Abstract. This paper introduces GA-Unity, the first Unity package
specifically designed for seamless integration of Geometric Algebra (GA)
into collaborative networked applications. Indeed, in such contexts, it has
been demonstrated [18] that using multivectors for interpolation between
transmitted poses reduces runtime by 16% and bandwidth usage by an
average of 50% compared to traditional representation forms (vectors and
quaternions); we demonstrate that GA-Unity further enhances runtime
performance. Tailored for 3D Conformal Geometric Algebra, GA-Unity
also offers an intuitive interface within the Unity game engine, simpli-
fying GA integration for researchers and programmers. By eliminating
the need for users to develop GA functionalities from scratch, GA-Unity
expedites GA experimentation and implementation processes. Its seam-
less integration enables easy representation of transformation properties
using multivectors, facilitating deformations and interpolations without
necessitating modifications to the rendering pipeline. Furthermore, its
graphical interface establishes a GA playground for developers within
the familiar confines of a modern game engine. In summary, GA-Unity
represents a significant advancement in GA accessibility and usability,
particularly in collaborative networked environments, empowering inno-
vation and facilitating widespread adoption across various research and
programming domains while upholding high-performance standards.

Keywords: Conformal Geometric Algebra · Unity Game Engine · Networked
Collaborative Environments · Visualization Tools · Production Ready

1 Introduction

Geometric Algebra (GA) has garnered significant attention across various sci-
entific disciplines [16, 15], particularly within the realm of Computer Graphics
(CG). In the domain of CG, Modern Game Engines (MGEs) have emerged as
pivotal platforms for application development [17]. Among these, Unity stands
as a preeminent and widely adopted MGE, notably in educational and research
contexts [10, 6].

Higher-dimensional algebras, such as dual quaternions and Geometric Alge-
bra—specifically, 3D Projective and 3D Conformal Geometric Algebra (3D PGA
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and 3D CGA) have demonstrated profound efficacy in CG applications, partic-
ularly in rendering, animation and deformations [12, 8], especially in networked
environments, as multivector representation of object poses leads to more effi-
cient bandwidth usage and better runtime performance [18].

Despite CG experts’ proficiency in Euclidean Geometry and Quaternions,
incorporating advanced representations into applications remains challenging.
Key concerns revolve around the scarcity of readily available, production-ready
tools suitable for integration into MGE environments where applications are
developed. Of particular hindrance is the necessity to construct a Geometric
Algebra (GA) framework from scratch, considering the specialized functionality
required. This includes tasks such as transforming all points to their GA equiv-
alent multivector form, applying deformations (e.g., translations, rotations, and
dilations), and determining multivector types. The demand for such GA frame-
works is particularly critical in Computer Graphics, especially in the emerging
trend of collaborative, shared virtual environments [28, 31]. Applications falling
into this category can greatly benefit from the utilization of multivectors instead
of standard representations (matrix and quaternion algebras). Indeed, authors
in [18] demonstrated a 16% runtime improvement and an average 50% reduction
in bandwidth usage for performing object interpolations among users collabo-
rating remotely in the same scene. This highlights the instrumental role that GA
can play if adopted by Unity developers. However, various challenges make this
adoption difficult (see Section 2.2).

In response to these challenges, we present GA-Unity. Engineered to bridge
the gap between advanced geometric representations and practical application
development within Unity, GA-Unity offers a comprehensive solution for CG
experts aiming to leverage the power of Geometric Algebra in their research
and development endeavors, especially in collaborative networked environments.
GA-Unity’s feature set includes a pipeline capable of efficiently handling object
transformations in GA forms, both for applying deformations and interpolat-
ing between objects, suitable for real-time visualization. Significantly, GA-Unity
is a production-ready implementation that addresses performance bottlenecks
identified in earlier studies, ensuring efficiency and scalability in practical net-
worked applications without compromising compatibility with other networking
pipelines.

The remainder of this paper is structured as follows. In Section 2, we provide
an overview of previous work and identify the limitations of existing tools. Sec-
tion 3 introduces the basic concepts of Geometric Algebra, laying the foundation
for understanding its applications. Section 4 details the design and architecture
of GA-Unity, highlighting its key components. We then delve into the features
of GA-Unity in Section 5, discussing how GA-Unity can be used for networked
collaborative applications, how objects are interpolated using GA, and present-
ing the graphical interface of the package. Section 6 evaluates the performance
of GA-Unity, presenting benchmarking results, comparing it with existing ap-
proaches for networked environments. Lastly, in Section 7, we present case studies
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and applications of GA-Unity in research environments, game development, and
education.

2 Related Work

Previous research has explored diverse approaches to integrating Geometric Al-
gebra (GA) into programming environments, particularly focusing on applica-
tions in CG and related fields.

Various Geometric Algebra textbooks, such as those by Hildenbrand et al.
[12] and Dorst et al. [8], offer introductory insights into Geometric Algebra, pre-
senting it as a geometrically intuitive framework within the context of CG. At
their core, these texts present Geometric Algebra as a unified language that facil-
itates intuitive object representation and kinematic computation across various
mathematical systems in CG.

In addition to providing a valuable representation, GA implementations also
offer efficiency gains. For instance, Papagiannakis et al. [25] demonstrated the
efficiency of GA in real-time character animation blending compared to standard
quaternion geometry implementations. In their study, GA rotors exhibited faster
performance and superior visual quality in real-time character animation blend-
ing scenarios, outperforming traditional quaternion geometry implementations.

In [24], authors provided a CGA-GPU inclusive skinning algorithm that pro-
vides smooth and more efficient results than standard quaternions, linear alge-
bra matrices, and dual-quaternions blending and skinning algorithms. Moreover,
their approach avoided conversion between different mathematical representa-
tions, suggesting the implementation of an all-in-one framework based only in
multivectors.

In the same context, Kamarianakis et al. [19] used CGA to perform realistic
cuts and tears in rigged character simulation, enabling new applications in medi-
cal surgical simulation. Their work was further improved in [20], where they also
used particles to simulate elasticity of the cut/torn model, for increased realism.

2.1 Previous Approaches to GA Integrations

CLICAL [21] (1982) was one of the earliest tools for computations involving
complex numbers, quaternions, octonions, vectors, and multivectors, enabling
geometric, wedge, and dot products. Gaigen 2 [9] efficiently generates Geometric
Algebra (GA) code from high-level algebra specifications, converting them into
low-level coordinate-based implementations in various target languages, adapt-
ing to program requirements for high performance. GABLE [22] and the Clif-
ford multivector toolbox for MATLAB [32] offer educational tools for GA in
Euclidean 3D-space, supporting Clifford algebras and matrix computations of
multivectors. Garamon [5], a C++ library, and Clifford [11], a Python mod-
ule, provide efficient implementations of GA for mixed-grade multivectors, with
Garamon employing a prefix tree approach for higher dimensions. The Python
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module kingdon [30] extends this by supporting multivectors over numpy ar-
rays, PyTorch tensors, or SymPy symbolic expressions with visualization fea-
tures. GAALOP [13, 14] optimizes geometric algebra files for high-performance
parallel computing on platforms like FPGA and CUDA. It integrates with CLU-
Calc software for interactive GA handling and supports output in formats like
C++, OpenCL, CUDA, CLUCalc, or LaTeX. GAALOPWeb [3], a Mathematica
tool, and another Mathematica package by Aragon et al. [4], enhance the ma-
nipulation, testing, and visualization of GA algorithms, providing user-friendly
interfaces for n-dimensional vector space calculations. Klein [23], a C++ library
for 3D Projective Geometric Algebra, targets high-throughput applications like
animation libraries and kinematic solvers, leveraging SSE for competitive per-
formance without generalizing the space’s metric or dimensionality.

2.2 Challenges in Adopting Existing Solutions in Modern Game
Engines

Fig. 1. Incorporating GA-Unity within a networked collaborative Unity project. User
A sends transformation information to User B over the network in multivector form.
GA-Unity is useful for both users: for User A, it streamlines the conversion from typical
representation forms (such as vectors, quaternions and scale factors) to GA, while for
User B, it aids in decoding and interpolating it. The benefits of this approach is a gain
of 50% in terms of bandwidth [18] and 25% in terms of running performance for the
receiving user B, as shown in Section 6.

Integrating existing implementations of GA into MGEs presents several chal-
lenges:

Language Limitations: MGEs typically support scripting languages like
C, C#, or C++, excluding the native execution of scripts in languages such
as Python. This limitation restricts the availability of readily usable code for
application and game developers, hindering the adoption of GA solutions.

Limited Functionality in C# Packages: Existing C# packages, like those
provided generated via Ganja.js [7], offer only basic multivector functionality.
While they provide essential operations such as geometric, inner, and outer prod-
ucts, conjugation, and scalar multiplication, they lack comprehensive support for
tasks like defining objects and applying transformations. This forces developers,
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including newcomers to GA, to create such functionalities from scratch, which
can be challenging even for experts.

Difficulty in Porting Efficient C++ Packages: Although packages like
Klein, Versor [2], written in C++, offer efficiency in terms of performance, port-
ing them to Unity’s C# environment presents significant challenges. While it’s
possible to create a C++-to-C# wrapper, this approach introduces complexities
such as performance overhead, maintenance requirements, memory management
issues, and limited access to C++ class interfaces and methods. Moreover, Klein’s
limitation to 3D Projective GA precludes the representation of scalings or round
objects like spheres or circles, unlike the more versatile 3D CGA.

3 Geometric Algebra Primer

3.1 Fundamentals of Geometric Algebra

Geometric algebra is a mathematical framework that unifies and extends many
algebraic systems, including vector algebra, complex numbers, and quaternions,
by introducing the concept of multivectors. Unlike traditional approaches, which
treat scalars, vectors, and higher-dimensional entities separately, geometric al-
gebra provides a cohesive framework to represent and manipulate these entities
seamlessly. At the heart of geometric algebra is the concept of the geometric
product, which generalizes the dot product and the cross product in Euclidean
spaces. Additionally, as all products can be defined using only the geometric one,
we need only use the latter one along with addition, scalar multiplication, and
conjugation to perform any multivector manipulation.

3.2 The 3D Conformal Geometric Algebra

In the context of this work we will be employing the so-called 3D Conformal
Geometric Algebra (CGA), a 32-dimensional extension of dual-quaternions [33],
CGA is a rich mathematical framework that enables the representation of 3D
round elements, such as spheres and circle, as multivectors within the algebraic
structure of CGA. Essentially, CGA serves as the minimal extension where such
representation becomes feasible. In the notation of the following sections, we
will be using the typical basis of CGA, which involves the elements {ei : i =
1, 2, 3, 4, 5} as well as all 32 potential geometric products of up to 5 of them. For
convenience, we define eo and e∞ as 1

2 (e5− e4) and e4+ e5. The inner and outer
(or wedge or cross) product of multivectors are denoted by | and ∧ respectively.
More information on the Projective Geometric Algebra (PGA) and CGA can be
found in standard GA textbooks or notes, such as [8, 29, 12].

3.3 Geometric Transformations in Conformal Geometric Algebra

In CGA, translations, rotations and dilations, i.e., uniform scalings with respect
to origin, can be expressed in multivectors, as shown in Table 1.
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Type Translation Rotation Dilation

Notes By (t1, t2, t3)
Equivalent to quaternion Uniform scale

q = a− di+ cj − bk by d wrt. origin

Multivector T = R = S =
1− 0.5(t1e1 + t2e2 + t3e3)e∞ a+ be12 + ce13 + de23 1 + 1−d

1+d
e4e5

Inverse T−1 = R−1 = S−1 =

Multivector 1 + 0.5(t1e1 + t2e2 + t3e3)e∞ a− be12 − ce13 − de23
(1+d)2

4d
+ d2−1

4d
e4e5

Table 1. Multivector forms of translations, rotations and dilations in 3D CGA, as well
as their inverses.

To apply transformations M1,M2, . . . ,Mn (in this order) to an object O, we
define the multivector M := MnMn−1 · · ·M1, where all intermediate products
are geometric. The resulting object O′ after all transformations are applied is
given by:

O′ = MOM−1 (1)

This represents the final form of O after all transformations have been applied.
Notice that we standard GA textbooks also use the reverse M̃ instead of the
inverse M−1 in the equation above, which essentially results in the same object
O′ potentially multiplied by a non-zero scalar; as we are in a projective space,
this essentially amounts to the same object.

4 Design driven by modern needs

The core objective of GA-Unity is to empower Unity developers, regardless of
their prior experience with Geometric Algebra (GA), to seamlessly integrate GA
into their applications without sacrificing performance. The design and features
of the proposed package revolve around this central idea.

One of the key features of the GA-Unity package is its native support for CGA
multivectors to represent geometric relationships between parent and child ob-
jects within the Unity Game Engine. The implementation is crafted to facilitate
developers’ rapid comprehension of GA concepts and immediate visualization of
results. Object transformations can be provided directly in multivector form or
generated as multivectors from mainstream formats such as translation vectors,
unit quaternions, and scale factors. These multivectors can be manipulated and
subsequently utilized by the Unity engine to apply the corresponding local-to-
world transformations to objects.

As previously highlighted in [18], multivectors are particularly suited for in-
terpolating objects. GA-Unity offers the capability to interpolate an object be-
tween two poses stored in multivector form (see Section 5.2). The intermediate
transformation multivector obtained through interpolation is seamlessly applied
to the object with increased performance compared to unoptimized implemen-
tations (see Section 6).
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Additional features of GA-Unity include the ability to add objects in multi-
vector form and instantly visualize them (or their duals). Real-time editing of
each coordinate of an object facilitates a deeper understanding of the geomet-
ric implications of coordinate adjustments. Moreover, GA-Unity supports the
creation of more complex objects using the wedge product for specific object
combinations. For example, the wedge product of two points with the point at
infinity e∞ represents a line passing through these points. Similarly, the wedge
product of two dual spheres (or planes) corresponds to their intersection, which
is a circle (or a line, respectively).

4.1 The GA-Unity Package

The proposed GA-Unity package essentially consists of 4 C# Unity scripts, de-
scribed below:

1. R410.cs: Originally generated by Ganja.js, contains basic multivector class
for CGA, along with basic methods such as scalar multiplication, conjugate,
and geometric/inner/outer product. Also includes basic functions to extract
transformation information from translators, rotors and dilators, as well as
perform linear multivector interpolation.

2. R410_Helper.cs: Used to increase performance by exposing basis elements
outside R410, as a single reference object. Contains functions that constructs
commonly used multivectors such as translators, rotors and dilations as well
as objects such as points or spheres.

3. R410_pool.cs: Creates a single reference object that is used to allocate an
extensible pool of multivectors that are used throughout the interpolation
phase. Using multivectors from the pool, and returning them back once no
longer needed, allows avoiding dynamic allocation of memory and increases
performance.

4. MultivectorLerp.cs: Contains all the interpolation pipeline, as described
in Section 5.2.

5. GUI.cs: Contains everything related to the Graphical User Interface (see
Section 5.4).

A complete Unity project incorporating GA-enabled deformations and in-
terpolations only needs this Unity package, along with a scene containing the
objects intended for visualization and/or interpolation. You can find a mini-
mal open-source working example of such a project in the GitHub repository
(https://github.com/papagiannakis/GA-Unity), along with the necessary doc-
umentation. The full closed-source implementation, which improves the pro-
posed interpolation mechanism for networked collaborative Unity applications
to achieve faster interpolations, has already been integrated into the MAGES
SDK [34], available for free.
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5 GA-Unity Features

5.1 Simplified Incorporation of GA in Networked Collaborative
Applications

In [18], the authors demonstrated the significant benefits of using multivector
forms to transmit deformation data in the context of networked collaborative
applications. They showed that employing GA forms leads to a 16% reduction
in runtime and an average 50% reduction in bandwidth usage compared to us-
ing mainstream formats such as vectors, quaternions, and scale factors. This
reduction in data transfer across the network between users is crucial for user
immersion, as jittery interpolations can disrupt it. In collaborative scenarios,
such issues can even compromise application functionality, as objects’ positions
may not be updated in time for users to interact with them, leading to situations
like missing hitting a moving ball in a tennis application or failing to grab an
object passed by another user.

While previous works demonstrate the methodology for using multivectors
to alleviate these issues, two major bottlenecks hinder the adoption of this ap-
proach. Developers were required to implement everything from scratch to in-
corporate this functionality into their applications, and an unoptimized imple-
mentation could result in performance hindrances due to continuous memory
allocation for 32-dimensional float arrays representing multivectors. GA-Unity
addresses both of these issues, as it can be directly incorporated into the work-
flow of a networked application (see Figure 1). Furthermore, its design mitigates
dynamic yet constant memory allocation that causes performance overhead using
a suitable pooling mechanism (refer to Sections 4 and 6). Finally, the proposed
workflow remains compatible with existing networking frameworks and pipelines
such as Photon1 or Riptide2.

5.2 Interpolating Objects in Unity using CGA

Consider the task of interpolating an object between two distinct poses denoted
as P1 and P2. These poses are characterized by translation, rotation, and dilation
multivectors (Ti, Ri, Di) for i = 1, 2, respectively. The interpolation factor α ∈
[0, 1] signifies the extent of transition between the poses. At α = 0, the object
aligns with pose P1, gradually transitioning towards pose P2 as α progresses
towards 1. Given that objects within MGEs are typically represented as meshes
comprising interconnected points, determining the transformed coordinates of
each point x within this mesh necessitates consideration of P1, P2, and α. This
transformed point, expressed in multivector form, is denoted as x(P1, P2;α) or
simply x(α).

To compute x(α), we apply the requisite transformations (T (α), R(α), D(α))
to x, facilitating the interpolation between poses P1 and P2 by the factor α.

1 https://www.photonengine.com/
2 https://riptide.tomweiland.net/
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Mathematically, this computation is articulated as:

x(α) := MxM−1 where M := T (α)R(α)D(α). (2)

The acquisition of these transformations follows a methodology similar to
that elucidated in [18]. Specifically, given the multivectors Mi = TiRiDi for i ∈
1, 2, we extract Di via the corresponding scale factor si using the methodology
described in Section 5.3, and evaluate the multivectors TRi := MiD

−1
i = TiRi.

We can now perform linear interpolation with factor α to calculate TR := (1−
α)TR1+αTR2 = T (α)R(α) and again use Section 5.3 to extract T (α) and R(α).
D(α) is calculated as the dilator corresponding to scale factor (1−α)s1+αs)s2.
Finally, Unity applies the evaluated transformations within its typical pipeline to
visualize the object interpolated. A summary of the proposed pipeline is depicted
in Figure 2.

Fig. 2. An overview of the proposed pipeline for interpolating between two poses is
provided. A pose can be inputted as a single multivector M , or as three multivectors
T,R,D, or via its typical representation form, consisting of a vector, a quaternion, and
a scale factor. Following a “preprocess” step to extract the TR and scale factor of each
pose (if necessary), corresponding vectors, quaternions, and scales can be obtained
for each α (alpha factor), which are natively used by Unity. Dashed boxes indicate
multivector forms.

While the resulting interpolation transformations differ from those obtained
using matrix/quaternion representations such as vectors and quaternions, prior
research [18] has shown that the resulting interpolated animations closely match
standard outcomes, especially when the poses are closely situated.

Moreover, one might question why we don’t directly evaluate the interpolated
M := (1 − α)M1 + αM2 and utilize it to derive T (α), R(α), and D(α). It can
be demonstrated that even a simple interpolation of two dilators does not align
with the linear interpolation of the corresponding scaling factors while involving
more complex multivectors tends to produce highly non-linear results.

5.3 Ability to extract transformation from a multivector product

A common mathematical problem that occurs in such applications regards the
extraction of translation T , rotation R and dilation D from a scaling motor,
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i.e., a multivector product M = TRD. To solve this problem, we apply M to
a unit sphere C, centered at origin. The obtained sphere C ′ = MCM−1 is a
sphere centered at t with radius d, that correspond to the translation vector of
T and the scale factor of D respectively. Since we obtained T and D, we can then
identify R := T−1MD−1 and extract the unit quaternion using the equivalence
in Table 1.

Extracting the center and radius of a sphere in multivector form is quite
straightforward, provided we know how it is represented in CGA. Indeed, a
sphere s centered at x = (x1, x2, x3) with radius r amounts to the CGA multi-
vector

S =x1e1 + x2e2 + x3e3 +
1

2
(x2

1 + x2
2 + x2

3 − r2)e∞ + eo

=x1e1 + x2e2 + x3e3 +
1

2
(x2

1 + x2
2 + x2

3 − r2 − 1)e4

+
1

2
(x2

1 + x2
2 + x2

3 − r2 + 1)e5. (3)

Notice that (a) setting r = 0 would yield the respective multivector for the
point x and that (b) given S we can extract both x and r. Indeed, if S[ei]
denotes the coefficient of ei of a sphere multivector then, provided that the
sphere is normalized, i.e., S[e5]− S[e4] = 1, we can extract the radius of r of S
by evaluating

r :=
√
S[e1]2 + S[e2]2 + S[e3]2 − 2(S[e4] + S[e5]), (4)

and its center x as it holds that

x := (x1, x2, x3) = (S[e1], S[e2], S[e3]). (5)

If the sphere S is not normalized, we can normalized it by dividing S with
the quantity S[e5] − S[e4]. The extraction of x, r can also be done using GA
operations (see eq. 4.75 in [29]).

5.4 A friendly Graphical User Interface for Multivector
Manipulation

To further enhance GA adoption among Unity developers, we have developed a
simple yet powerful Graphical User Interface (GUI) inspired by tools like Geoge-
bra [1]. This GUI, streamlines the process of adding multivector objects such as
lines, circles, and planes, while also enabling the creation of new objects through
combinations (e.g., intersections or unions) of existing ones. Users can effortlessly
add an object (along with its dual [12]), which is stored in multivector form and
visualized using Unity. The object’s coordinates can be edited in real-time, pro-
viding an additional educational layer as users gain a better understanding of
the geometric properties associated with each coefficient.

Creating objects via intersections, joins, or meets of other objects allows users
to grasp the geometric power inherent in CGA. For instance, users can define a
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line in CGA by joining two points or a circle by joining three points. Additionally,
users have the option to deform objects or interpolate them between two poses,
utilizing the methodologies described in Sections 3.3 and 5.2.

Regardless of their actions, the related multivectors are always displayed and
stored, ready to be reused. We anticipate that this comprehensive approach will
greatly enhance the accessibility of GA, providing an educational playground for
GA within the familiar environment of an MGE like Unity.

6 Performance Evaluation in Networked Environments

Objects Previous Our Improvement Improvement: Ours VS
Used Method[18] Method [18] Ours VS vectors & quaternions
50 1,33 ms 0,97 ms 27% 20%
100 2,65 ms 1,00 ms 62% 26%
150 3,90 ms 1,13 ms 71% 27%
200 5,27 ms 1,19 ms 77% 28%
250 6,44 ms 2,62 ms 59% 25%

Table 2. (Columns 1-4) Performance comparison between our GA implementation and
the previous GA implementation [18]. The metrics indicate the time required to perform
the interpolation of a set of objects, each with varying cardinality. Our implementation
demonstrates a performance boost of over 20% as the number of interpolated objects
increases. Results were obtained using only CPU operations in a Windows 10, Intel
Core i5-8500 3.00 GHz machine. (Column 5) Comparison performance of our method
compared to typical pipeline using vectors for transformation and quaternions for rota-
tions. The 16% increased performance demonstrated between the typical pipeline and
the method proposed in [18] is further enhanced by the percentages in column 4. Notice
that the performance boost was obtained by sending less information per objects per
second in multivector form.

The previously proposed implementation for networked applications [18] re-
quired the creation of new multivectors at each interpolation state, leading to
frequent memory allocations for 32-dimensional vectors, often occurring multiple
times per second to generate frames. As transformation multivectors only use at
most 16 floats, 16-dimensional arrays were used instead. However, even with this
optimization, the memory allocation process posed a performance bottleneck,
which we addressed by implementing a pooling mechanism approach. Table 2
illustrates that our approach resulted in an average decrease of more than 50%
in the time required to perform the necessary interpolations for a set of objects
with varying cardinality. It is evident that as more objects are interpolated, the
performance gain becomes more pronounced, up to a certain point. This gain
occurs for each user that receives and interpolates a multivector, as illustrated
by User B in Figure 1. Notably, this gain is on top of the previously reported
16% benefit that occurred simply by replacing traditional with GA-based forms
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[18] and sending less transformation information per frame to achieve the same
visual result. In conclusion, in networking collaborative applications, GA-Unity
may provide an average improvement of more than 25% compared to traditional
approaches, regarding runtime.

To assess the performance of the interpolation, we conducted the following
steps. Initially, we determined the scene’s initial frame rate. For example, if we
measured 250 FPS, it implies that we required 4 (1000/250) milliseconds (ms) to
execute the necessary operations for each frame. Subsequently, we evaluated the
frame rate of the same scene while continuously interpolating a given number of
cubes (50,100, 150, 200 or 250) over an average duration of 10 seconds. Again, we
identified the required time to evaluate its frame using the recorded FPS. Finally,
we computed the difference in time required for each frame, which represents the
time needed to calculate the objects’ interpolation.

As a final remark, the preliminary performance analysis presented aims to
demonstrate the improvements over previous implementations, rather than of-
fering a comprehensive benchmark of the tool, which falls outside the scope of
this paper.

7 Case Studies and Applications

7.1 Use Cases in Research Environments

MGEs such as Unity are commonly utilized in research settings to emulate com-
plex environments, apply diverse physics laws, and simulate scenarios based on
user-defined parameters. This widespread adoption stems from the need for real-
istic visualization of experiments and work, coupled with the ability to efficiently
solve or approximate complex equation systems.

GA-Unity seamlessly integrates into such projects without apparent ren-
dering performance. Moreover, it can complement various physics calculations,
leveraging the effectiveness of GA in diverse scientific domains [15]. The ease of
incorporating GA into Unity-based projects could further accelerate its adop-
tion, making it more prevalent within the research community.

7.2 Using GA for game development & industrial large-scale
projects

Visualization tools such as Ganja.js and CLUCalc offer representations of defor-
mations or objects using Geometric Algebra (GA). However, these options lack
the capability to visualize complex scenes realistically. They fall short in pro-
viding features like shadows, lighting options, or automatic object animation.
Additionally, they struggle to scale up and integrate seamlessly into MGEs, lim-
iting their usefulness in game development and/or large-scale projects tailored
to industry demands.

GA-Unity addresses these limitations by enabling the integration of GA into
production-ready applications and large-scale products, leveraging the extensive
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usage of Unity in their development. This package facilitates the swift adoption of
multivector representation forms, thereby introducing GA to a rapidly expanding
market, akin to the widespread adoption of quaternions in the past.

One of the key advantages of GA-Unity is its seamless integration with
Unity’s native support for animations. It replaces typically used transformation
representation forms with GA equivalents, allowing for efficient interpolations.
This transition is particularly beneficial in collaborative networked Virtual Real-
ity (serious) games and applications, where constant exchange and interpolation
of transformations among users are essential [18].

7.3 Educational Implementations

Unity is widely recognized for its use in undergraduate and graduate CG curric-
ula worldwide. Typically, computer scientists in these courses are introduced to
fundamental representation forms such as transformation matrices and quater-
nions. However, apart from a few exceptions [27, 26], they seldom delve deeper
into advanced geometric forms like geometric algebra and/or dual-quaternions.
One major reason for this gap is that the Unity platform used for development
lacks native support for such forms, making it challenging, if not impossible, for
students to understand and integrate GA seamlessly. GA-Unity addresses this
limitation by enabling the early adoption of GA in CG educational curricula,
thereby significantly impacting the proliferation of GA knowledge.

For example, using GA-Unity in a undergraduate CG course at University of
Crete, students were able to easily perform a simple task of cube interpolation
between two poses using GA, where they better understood the power of using
alternative representation forms.

8 Conclusions, Future Work and Acknowledgements

The incorporation of Geometric Algebra (GA) into the Unity Game Engine via
the open-source GA-Unity package, available at https://github.com/papagianna-
kis/GA-Unity, marks a significant milestone in the realm of CG and simulation.In
the context of collaborative networked applications, utilizing GA for represent-
ing, exchanging, and interpolating transformation data offers advantages in both
bandwidth utilization and runtime performance. In this study, we’ve showcased
that runtime performance can be further enhanced from the previously reported
16% [18] to over 25%, while the bandwidth benefits remain consistent at an av-
erage of 50%. Furthermore, by designing GA-Unity to seamlessly integrate with
the Unity pipeline and releasing it as an open-source tool, we aim to democratize
GA for developers and help them explore the benefits of GA within the familiar
environment of the Unity game engine.

In our future work, we aim to enhance performance by introducing GPU or
parallel computations as well as incorporate production-ready C++ framework
such as Klein. We will investigate the benefits of using various GA’s such as 3D
PGA or G6,3 as well as alternative interpolation techniques such as logarithmic
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multivector blending. Lastly, we envision adapting GA-Unity to various MGEs
beyond Unity, such as Godot3 or even custom-made game engines.

This work is partially supported by the OMEN-E project (PFSA22-240),
that have received funding from the Innosuisse Accelerator programme.
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