
UniSG^GA: A 3D scenegraph powered by Geometric Algebra
unifying geometry, behavior and GNNs towards generative AI

Manos Kamarianakis
kamarianakis@uoc.gr

FORTH - ICS, University of Crete,
ORamaVR

Heraklion, Greece

Antonis Protopsaltis
aprotopsaltis@uowm.gr

University of Western Macedonia,
ORamaVR

Kozani, Greece

Dimitris Angelis
dimitris.aggelis@oramavr.com

FORTH - ICS, University of Crete,
ORamaVR

Heraklion, Greece

Paul Zikas
paul@oramavr.com

University of Geneva, ORamaVR
Geneva, Switzerland

Mike Kentros
mike@oramavr.com

FORTH - ICS, University of Crete,
ORamaVR

Heraklion, Greece

George Papagiannakis
papagian@ics.forth.gr

FORTH - ICS, University of Crete,
ORamaVR

Heraklion, Greece

ABSTRACT
This work presents the introduction of UniSG^GA, a novel inte-
grated scenegraph structure, that to incorporates behavior and
geometry data on a 3D scene. It is specifically designed to seam-
lessly integrate Graph Neural Networks (GNNs) and address the
challenges associated with transforming a 3D scenegraph (3D-SG)
during generative tasks. To effectively capture and preserve the
topological relationships between objects in a simplifiedway, within
the graph representation, we propose UniSG^GA, that seamlessly
integrates Geometric Algebra (GA) forms. This novel approach
enhances the overall performance and capability of GNNs in han-
dling generative and predictive tasks, opening up new possibilities
and aiming to lay the foundation for further exploration and devel-
opment of graph-based generative AI models that can effectively
incorporate behavior data for enhanced scene generation and syn-
thesis.

KEYWORDS
Geometric Algebra, Generative AI, Graph neural networks, 3D
scenegraph, Entity Component System, Behavior embedding

1 INTRODUCTION
The recent success of pre-trained foundation models, such as GPT
(Generative Pre-trained Transformer), has paved the way for evolu-
tion in geometric deep learning [2] and GNNs [6]. Such advance-
ments have greatly improved the generation of static 3D scenes [3]
by incorporating relational patterns within the graph topology as
node or link features. Typically, these scenes rely on well-defined
3D-SGs. The creation of immersive VR experiences require the in-
corporation of behavioral information and interactions, that are
specified with the adoption of the graph structure Lessons-Stages-
Actions (LSA) [19].

Nevertheless, the efficient input of all encapsulated data to GNNs
poses a challenge, as it requires managing three distinct graph struc-
tures (see Figure 1), namely 3D geometry, interactive event-based
animations encapsulated as behaviours (LSAs) and GNNs. This
introduces a great complexity in maintaining transformations be-
tween these graphs that may lead to a potential bottleneck. To
address these limitations, we propose the Universal Scenegraph

(UniSG), a novel data structure aimed at providing a no-code ap-
proach featuring GNNs, that generate new nodes, edges, and fea-
tures, reflecting the creation of 3D models, scenes, and behavioral
steps. UniSG paves the way towards generative AI techniques, by
integrating Entities-Components-Systems (ECS), 3D-SGs, and LSAs
with GNNs, simplifying the creation of 3D scenes with embedded
behavior, and mitigating existing process bottlenecks.

UniSG leverages a representation form that is able to capture
and preserve relative topological information between parent and
child entities. Rather than relying on conventional Euclidean-based
matrix form or Euler angles or dual/single quaternions, commonly
employed in 3D scenes, we utilize Geometric Algebra (GA) based
forms, such as multivectors; the resulting model is denoted as
UniSG^GA. GA-based representations enable the encapsulation
of diverse transformation data in a unified format, facilitating [14]
deeper geometric connections, thereby influencing the performance
of GNNs across various tasks (see Section 1.2).

1.1 The importance of GNNs for Generative AI
GNNs have gained significant attention in recent years due to their
effectiveness in handling graphs of varying types, sizes, structures,
connectivity patterns and data with complex relational structures,
due to the high flexibility and adaptability of their architectures.
Their design makes them particularly well suited for generative and
predictive AI tasks that involve graph-structured data, like complex
3D scenes, where nodes represent objects and edges encode rela-
tionships or connections between them, as they are able to capture
spatial relationships, model dependencies and extract meaning-
ful representations. Specifically for an entity-component-systems
(ECS) in a scenegraph CG framework [13, 17], a GNN involves het-
erogeneous nodes, representing entities and diverse components,
containing object-related data (transform, mesh, image texture data,
etc.).

GNN aggregation allows the capture of the graph’s local depen-
dencies, while its propagation through the graph allows the capture
of global dependencies. In this context, complex interactions be-
tween nodes may also be captured by iterative node representation
refinement, using message-passing mechanisms. Such rich infor-
mation about the nodes and their spatial relationships, learned

https://orcid.org/0000-0001-6577-0354
https://orcid.org/0000-0002-5670-1151
https://orcid.org/0000-0003-2751-7790
https://orcid.org/0000-0003-2422-1169
https://orcid.org/0000-0002-3461-1657
https://orcid.org/0000-0002-2977-9850


Kamarianakis, Protopsaltis, Angelis et al.

Figure 1: The UniSG^GA unifies the three diverse graphs that must be maintained for a 3D scene that includes behaviour,
digestible by a GNN: (a) the 3D scenegraph with Entity-Component-Systems, (b) the behavioral LSA graph and (c) the deriving
GNN graph. The components describing the parent-child relative topology are expressed in GA-based forms, for increased
performance on predictive and/or generative tasks.

from the training data, may be encoded in meaningful and low-
dimensional embeddings, that involve fixed-length vectors or a
continuous feature space. The GNN model may be trained in a)
supervised manner, involving annotated 3D-SGs, aiming to predict
missing elements or labels, and b) unsupervised manner involving
graph similarity or reconstruction losses, aiming to optimize the
generative model.

1.2 GA and GNNs
The combination of GA with GNNs offers several benefits across
different domains and tasks[1]. GA-based approaches have demon-
strated superior information (inherent structures and correlations
among multiple dimensions) preservation, as multi-dimensional
data are represented through multivectors. This leads to improved
performance, compared to traditional techniques, in tasks includ-
ing as time series processing, hyperspectral image analysis, and
traffic prediction [9–12, 16]. They also exhibit reduced overfitting
risks, compared to real-valued counterparts, making them more
effective in capturing complex features while maintaining the multi-
dimensionality of the data.

GA is particularly advantageous in handling rotational data,
making it valuable for computer vision tasks, like pose estimation
or protein prediction [14, 15]. GA-based formulations enable better
regression on rotations and can reduce errors in high-noise datasets
while learning fewer parameters. Additionally, GA-based graph fea-
ture embedding enhances the quality and presentation of graph
features in GNNs. By leveraging the high algebraic dimensions of
GA, feature information distortion across hidden layers can be min-
imized, resulting in improved performance in graph-related tasks.
Furthermore, GA-based approaches can reduce computational com-
plexity by utilizing appropriate multivector representations and
exploiting the algebraic properties of GA. This reduction in complex-
ity enables more efficient data processing and analysis, with fewer
parameters to be learned without compromising performance.

In summary, the integration of GA with Neural Networks offers
benefits, such as enhanced representation of multi-dimensional
data, improved information preservation, effective handling of ro-
tational data, better graph feature embedding, robustness to poor
network conditions, and reduction of computational complexity.
These advantages make GA a valuable framework for various sci-
entific domains and tasks, facilitating more accurate and efficient
data processing and analysis.

Paper Overview. In Section 2 we introduce the UniSG model,
whereas in Section 3 we propose the enhanced UniSG^GA model
that exploits GA-based representation forms. These models are im-
plemented and available to use within the Elements project, which
now includes enhanced GA-functionalities, as described in Sec-
tion 4. Results obtained for our models performance are presented
in Section 5, followed by Conclusions, Future Work and Acknowl-
edgments.

2 UNISG: A UNIVERSAL SCENEGRAPH
The UniSG system, introduced in a concise manner in [17], exhibits
a heterogeneous graph structure built upon the Entity Component
System in a Scenegraph (ECSS) model, such as the one proposed
in [13]. This graph encompasses diverse component types capable
of storing both geometric and behavioral information relevant to
interaction with the 3D scene and events triggered by specific con-
ditions. Specifically, the UniSG graph incorporates three types of
components: info, TRS, and mesh. The info components maintain
a count of node types among their children, while the TRS com-
ponents store a 16-dimensional vector obtained by flattening the
corresponding transformation matrix. The mesh components house
a feature vector of size 1024, representing the mesh using a suitable
encoder such as the AtlasNetEncoder [4] combined with a Poisson
sampling process. This encoding methodology ensures a fixed-size
representation regardless of the complexity of the original mesh.



UniSG^GA: A GA-empowered Universal Scenegraph

Subsequently, the resulting vector can be decoded using the Atlas-
NetDecoder to generate a point cloud, which can then be further
reconstructed into a triangulated mesh.

To incorporate behavioral functionality, the UniSG system intro-
duces a forth ActionData component that stores data pertaining
to desired behavioral characteristics, accompanied by appropriate
Action systems responsible for processing this data. These ECS
components and systems effectively represent user actions required
within a training scenario, akin to those stored in the Lesson-Stages-
Actions (LSA) data structure [18]. The ActionData nodes adhere to
a standardized structure for all actions and store action-specific data
and conditions in vector form. The diverse Action systems con-
tinuously traverse the graph or its designated sections to validate
whether the specified conditions are met.

The architectural elements of the ECS framework are depicted
in Figure 2 as follows. The black nodes represent entities, while
the blue nodes represent components, which encapsulate various
data such as transformations, meshes, and actions. Systems, repre-
sented by red lines, process the data contained in components and
perform specific tasks while traversing the graph. Graph features,
highlighted in yellow, are represented in vector form, enabling their
utilization by GNNs for further analysis and processing.

Figure 2 also exemplifies the implementation of an "Insert" action
within the UniSG system. In this specific scenario, the InsertAction
system is responsible for verifying whether the placement of the
scalpel on the knee adheres to the specified spatial boundaries.
This check is performed when the system visits the ActionData
component.

To consolidate disparate data types into a unified format, var-
ious file formats commonly employed have been merged into a
single master file. Pixar’s Universal Scene Description (USD) (http:
//graphics.pixar.com/usd/) future-proof format has been selected for
its exceptional versatility, enabling the inclusion of more advanced
features such as VR-Recording [7].

3 UNISG^GA: EMPOWERING UNISG WITH
GEOMETRIC ALGEBRA

The original UniSGmodel employed a TRS component, which stored
the topological relationship between an entity and its parent as a
16-dimensional array vector. This vector was obtained by flattening
a 4x4 transformation matrix, resulting from the multiplication of
Translation, Rotation, and Scaling matrices.

In this paper, we propose the UniSG^GA model, which over-
comes the limitation of relying solely on matrix-derived vectors.
The UniSG^GA model suggests the utilization of alternative forms
of transformation data, allowing for a more diverse range of rep-
resentations. Particularly, we advocate for the adoption of GA to
express data that represents geometrical relationships. The integra-
tion of GA is not merely intended to promote its acceptance, but
rather to demonstrate its potential to yield improved outcomes in
various scientific domains, particularly those involving predictive
and generative tasks, with a special focus on GNNs.

4 UNISG^GAWITHIN THE ELEMENTS
PROJECT

The proposed UniSG^GA structure is already implemented within
the Elements project, introduced in [13], similar to its predeces-
sor UniSG. Elements, presents a pioneering open-source pythonic
framework based on entity-component-systems (ECS) implemented
within a scenegraph architecture. It is explicitly tailored to address
the demands of scientific, visual, and neural computing applications.
Comprised of three vital Python components—pyECSS, pyGLV, and
pyEEL—the Elements package offers a foundational implementation
of the ECS paradigm, accompanied by practical examples that profi-
ciently familiarize even inexperienced computer graphics program-
mers with fundamental principles and methodologies. Notwith-
standing its straightforwardness, Elements retains a transparent
nature, affording users the ability to scrutinize and manipulate
each stage of the graphics pipeline. Leveraging Python’s inherent
advantages in rapid prototyping and development, users can aug-
ment Elements’ capabilities by introducing novel components and
systems or refining existing ones.

The collection of jupyter notebooks within the pyEEL repository
serves as a demonstrative repository for showcasing the influence
of Elements’ present and future features across diverse scientific
domains and packages, thereby establishing a valuable pedagogical
resource for both novice and intermediate developers. To facilitate
the transition to GA forms, pyEEL now incorporates a series of
Jupyter notebooks that serve three purposes: (a) introducing basic
GA concepts to users unfamiliar with GA, (b) demonstrating the
equivalence between different representation forms in a digestible
manner for intermediate GA users, and (c) presenting more ad-
vanced applications of these principles, such as model animation
using GA, for experienced GA users.

4.1 Geometric Algebra powered 3D scenegraph
Currently, matrix representations dominate the field due to their
ease of implementation and compatibility with GPU shader-level
operations. Although quaternions have mitigated issues such as
gimbal lock and interpolation artifacts when evaluating rotation
matrices, GA introduces a further advancement in representation
forms. By utilizing translators, rotors, and dilators as GA-based
counterparts for translation, rotation, and dilation, respectively,
we can achieve improved results both quantitatively (reducing the
number of keyframes required for interpolation) and visually [8].

Complex operations, such as extracting geometric information
from motors (i.e., geometric products of a translator and a rotor),
are now performed with ease, by leveraging the capabilities of the
well-maintained Clifford Python package [5], facilitating efficient
transmutation between different forms.

Specifically, let 𝑀 be a 4x4 matrix representing a rotation fol-
lowed by translation. It is well known that the top left 3x3 submatrix
is a rotation matrix and the 3 first elements of the last column is the
translation vector 𝑡 . From 𝑅 matrix we can extract the angle/axis,
and therefore determine the equivalent unit quaternion 𝑞 that ex-
presses the same rotation. Finally, having the quaternion and the
translation vector you can easily concatenate them to obtain the
respective dual-quaternion 𝑑𝑞. The following is summarized in (1),
where rotational data are represented in cyan, translational in blue

http://graphics.pixar.com/usd/
http://graphics.pixar.com/usd/


Kamarianakis, Protopsaltis, Angelis et al.

Figure 2: (Left) As opposed to the UniSGmodel [17], the proposed UniSG^GAmodel suggests using any GA-based representation
form for the TRS component (red box), instead of the original 16-dimensional array vector, deriving from the flattening of a
transformation matrix. (Right) A diagram denoting the contributions presented in this paper, with respect to state-of-the-art.

and mixed data in purple.

𝑀 =


𝑚1 𝑚2 𝑚3 𝑡1
𝑚4 𝑚5 𝑚6 𝑡2
𝑚7 𝑚8 𝑚9 𝑡3
0 0 0 1

 ⇔ 𝑅 =


𝑚1 𝑚2 𝑚3
𝑚4 𝑚5 𝑚6
𝑚7 𝑚8 𝑚9

 & 𝑡 = (𝑡1, 𝑡2, 𝑡3)

⇔ (Angle,Axis) & 𝑡 ⇔ Quaternion 𝑞 & 𝑡 ⇔ Dual-Quaternion 𝑑𝑞.
(1)

From the translation vector 𝑡 , we can easily determine the corre-
sponding translator 𝑇𝑃𝐺𝐴 in 3D PGA as follows:

𝑇𝑃𝐺𝐴 = 1 − 0.5𝑒′0 (𝑡1𝑒
′
1 + 𝑡2𝑒

′
2 + 𝑡3𝑒

′
3), (2)

where 𝑒′0, 𝑒
′
1, 𝑒

′
2 and 𝑒

′
3 are basis vectors of 3D PGA. Similarly, we

can derive the corresponding translator 𝑇𝐶𝐺𝐴 in 3D CGA as :

𝑇𝐶𝐺𝐴 = 1 − 0.5𝑒0 (𝑡1𝑒1 + 𝑡2𝑒2 + 𝑡3𝑒3) (𝑒4 + 𝑒5), (3)

where 𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4 and 𝑒5 are basis vectors of 3D CGA. Extraction
of the vector 𝑡 from both 𝑇𝑃𝐺𝐴 and 𝑇𝑃𝐺𝐴 is apparent as long as
the multivectors are normalized; otherwise, a division by the scalar
part is initially required.

Given a unit quaternion 𝑞 = 𝑞0 + 𝑞1𝑖𝑖𝑖 + 𝑞2 𝑗𝑗𝑗 + 𝑞3𝑘𝑘𝑘 , we can easily
determine the respective rotor 𝑅𝑃𝐺𝐴 in 3D PGA and 𝑅𝐶𝐺𝐴 in 3D
CGA (see [8, Section 2.4]) as

𝑅𝑃𝐺𝐴 = 𝑞0 − 𝑞3𝑒
′
12 + 𝑞2𝑒

′
13 − 𝑞1𝑒

′
23, and (4)

𝑅𝐶𝐺𝐴 = 𝑞0 − 𝑞3𝑒12 + 𝑞2𝑒13 − 𝑞1𝑒23, (5)

where {𝑒′12, 𝑒
′
13, 𝑒

′
23} and {𝑒12, 𝑒13, 𝑒23} are respectively PGA and

CGA basis vectors. In conclusion, the following equivalencies holds:

𝑇𝑃𝐺𝐴 ⇔ 𝑡 ⇔ 𝑇𝐶𝐺𝐴, and 𝑅𝑃𝐺𝐴 ⇔ 𝑞 ⇔ 𝑅𝐶𝐺𝐴 . (6)

Lastly, in [8, Section 2.4], it is shown that given a PGA motor𝑀𝑃𝐺𝐴

resulting from the geometric product of 𝑇𝑃𝐺𝐴 and 𝑅𝑃𝐺𝐴 , one may
extract the latter two. The same holds for a CGA motor 𝑀𝐶𝐺𝐴

resulting from the geometric product of the translator 𝑇𝐶𝐺𝐴 and
the rotor 𝑅𝐶𝐺𝐴 , yielding:

𝑀𝑃𝐺𝐴 ⇔ 𝑅𝑃𝐺𝐴 & 𝑇𝑃𝐺𝐴, , and 𝑀𝐶𝐺𝐴 ⇔ 𝑅𝐶𝐺𝐴 & 𝑇𝐶𝐺𝐴 . (7)

Using all equivalencies described above we can now extend (1) to
the complete equivalency list of representation forms; all equivalen-
cies can occur using functions implemented within the Elements
framework:

Transformation Matrix𝑀 ⇔ Rotation Matrix 𝑅 & vector 𝑡 ⇔
(Angle,Axis) & 𝑡 ⇔ Quaternion 𝑞 & 𝑡 ⇔ Dual-Quaternion 𝑑𝑞.

⇔ 𝑀𝑃𝐺𝐴 ⇔ 𝑅𝑃𝐺𝐴 & 𝑇𝑃𝐺𝐴 ⇔ 𝑀𝐶𝐺𝐴 ⇔ 𝑅𝐶𝐺𝐴 & 𝑇𝐶𝐺𝐴 . (8)

5 RESULTS
To validate the effectiveness of our proposed approach, we con-
ducted three experimentation tasks in the domains of classification,
generative modeling, and topology prediction for 3D scenegraphs.
In Figures 3 and 5, we present the obtained results using differ-
ent representation forms for the TRS component of the UniSG^GA
model. Specifically, we compare the use of a) flatten matrices (rep-
resenting the original UniSG), b) CGA and c)PGA multivectors, d)
a vector for translation combined with an angle and an axis for
rotation , as well as a e) dual- quaternion representation.

Each task is accompanied by a comparison graph, demonstrating
the performance of the GA-based representations in relation to
the conventional Euclidean-oriented formats. The results consis-
tently show that the utilization of GA-based representation forms,



UniSG^GA: A GA-empowered Universal Scenegraph

Figure 3: Train accuracy (Left) and Loss (Right), for the classification task described in Section 5.1. These are mean values after
running the experiment 10 times.

such as CGA/PGA multivectors and dual-quaternions, either out-
performs or performs on par with the traditional flatten matrices
representation.

5.1 Classification
Ourmethodologywas evaluated through a classification task involv-
ing a neural network architecture composed of two Convolutional
layers. The GraphSAGE convolution operation was applied to the
input graph within this framework. To assess the performance of
our approach, we curated a dataset comprising of 100 3D scenes.
These scenes were generated using a random noise- based data aug-
mentation technique, which involved perturbing the components
of two behaviorally rich 3D scenes modeled using both the UniSG
and UniSG^GA system. The scenes selected for augmentation were
a surgical operating room (OR) and a living room. The dataset was
split into training and testing sets, with a ratio of 70% for training
and 30% for testing. The neural network model was trained for 20
epochs, and the GNN attention mechanism was employed. In the
experimentation phase of our approach, we performed 10 runs for
each experiment, which, remarkably, achieved a 100% accuracy on
both the training and testing splits, demonstrating its effectiveness.

In the experimentation results of the classification task, depicted
in Fig 3, we notice a low initial mean accuracy on all methods,
indicating a possible need for longer training or model adjustments.
Accuracy improves consistently over epochs, exhibiting a few fluc-
tuations in CGA and PGA. The steepness of the Vector+Angle/Axis
curve indicates that the model learns quickly as its accuracy get
100% after 7.5 epochs. All curves seem to be converging to 100%
accuracy after 17 epochs, a clear sign that it is performing well on
the training data. We also notice a low initial loss on all curves, with
vector+Angle/Axis curve to be minimizing faster, after 10 epochs,
than the others. All loss curves seem to converge after 18 epochs,
indicating a well performing model.

5.2 Generative AI using UniSG^GA
Our approach was further tested on a generative task. For this
purpose, we generated a dataset of 1000 unique scenes with mean-
ingful layouts, specifically representing a surgical operating room
(OR). These scenes were then utilized to train a Conditional Graph

Variational AutoEncoder (CGVAE). The primary objective of the
CGVAE is to enable the addition of objects to an existing or empty
scene based on their category, either sequentially or in bulk. Ulti-
mately, since the utilized UniSG^GA structure includes behavior
components, for all object entities, and the respective systems, we
aim to train our autoencoder with scene objects that incorporate
behavior and provide a complete generative AI solution (currently
only topology generation is evaluated).

To achieve this, each entity node within the UniSG^GA was
labeled with its corresponding category, e.g., "Scalpel". During the
training process, the Encoder module, which encompasses a GNN
with Graph Convolutional layers, encodes the 𝑁 nodes of the graph
using their inherent 𝐹 features and their associated category em-
beddings. For each of the nodes a vector 𝐸 is produced, by passing
the labels through the embeddings, resulting in a 𝑁x𝐸 matrix. The
resulting encodings/latent space representation for each node,Z,
are concatenated with their respective category embeddings, by
concatenating the input graph node matrix, of size 𝑁x𝐹 , with the
embeddings, resulting in a 𝑁x(𝐹+𝐸) matrix. This concatenated rep-
resentation, denoted as Z, is subsequently fed into the Decoder
module, which consists of two Multilayer Perceptrons (MLPs): one
for decoding the node features from Ẑ and one for decoding the
adjacency matrix from Ẑ (see Figure 4).

Our training procedure incorporates several loss functions. Specif-
ically, we employ mean squared error (MSE) loss for node feature
reconstruction, binary cross-entropy (BCE) loss for adjacency ma-
trix reconstruction, and Kullback-Leibler (KL) divergence loss to
encourage diversity in scene generation. As the model is condition-
ally trained using these categories, a conditional sampling of the
generated scenes is possible, based on specific object categories.
This allows the generation of scenes that are greatly influenced by
the categories of existing or newly introduced nodes.

The experimentation results of the generative task, we see the
loss in Fig 5 (Left), that depicts the discrepancy between the gener-
ated and the target output. In this regard we notice that all mean
losses are initially relatively low, with PGA and CGA significantly
lower, meaning that all models produce high-quality outputs from
the start. All loss reductions are minimized rapidly consistently
below 1.0. Although all methods seem to converge very early, CGA



Kamarianakis, Protopsaltis, Angelis et al.

Figure 4: Diagram describing the generative task of Section 5.2.

Figure 5: Loss of epochs 0-100, regarding the generative task described in Section 5.2 (Left) and the topology (edge) prediction
task described in Section 5.3 (Right). These are mean values after running the experiment 10 times.

and PGA mean loss curves are always below the others; which is
indicative that the model is well-performing and that it has learned
the generative task.

5.3 Topology prediction
Finally, a topology prediction task was utilized to further evaluate
the differences between UniSG and the GA-empowered UniSG^GA.
In such tasks, it is common to seek accurate predictions regarding
the spatial relationships between objects, including relationships
such as "above", "below", "right-of", as well as higher-level relation-
ships like "part-of" or "connected-to". Our approach was specifically
evaluated on a topology prediction task involving the identification
of the "on-top-of" relationship between two objects. To address this
prediction task, we made modifications to our previous model by
transforming the Graph Variational AutoEncoder into a simplified
Graph AutoEncoder that focused on adjacency matrix reconstruc-
tion for predicting the desired topology link based on the graph
structure. It is worth noting that while our modified model proves
effective for certain topology prediction tasks, it may not capture
the complexity of relationships or high-level semantics within the
UniSG.

The experimentation results of the topology prediction task,
depicted in Fig 5 (Right), show that mean loss (on 10 runs) with
CGA and PGA are initialy low and are minimized rapidly compared
to other methods. Although all methods seem to converge early,
after 15 epochs, CGA and PGA mean loss curves are always below
the others, indicating a well-performing model. The loss curves do
not show any signs of overfitting which is a direct consequence of
the performed data augmentation, increasing diversity and quantity,
of the training samples. For each of the 10 runs, a single random
scene was generated with 10000 cubes, and link prediction was
performed on each run on a single scene.

6 CONCLUSIONS AND FUTUREWORK
In this work, we introduced UniSG^GA, an integrated graph struc-
ture designed to be seamlessly compatible with Graph Neural Net-
works (GNNs) while incorporating behavior data. A key contribu-
tion of UniSG^GA is its ability to overcome the challenges associ-
ated with transforming a 3D scenegraph (3D-SG) when conducting
generative tasks. By leveraging GA forms, UniSG^GA effectively
captures and stores the topological relations between objects within
the graph, while enhancing the performance and capability of GNNs
when handling predictive and generative tasks. This advancement



UniSG^GA: A GA-empowered Universal Scenegraph

paves the way for more efficient and intuitive approaches in gener-
ating complex 3D scenes with embedded behavior.

As a future endeavor, our plan is to train the GNN architecture of
UniSG^GA using an extensive corpus of 3D scenes encompassing
both content and behavior. This training dataset will consist of
various types of scenes, including models and even segments of
educational curricula. Through this training process, we aim to
evaluate the performance of UniSG on intricate generative AI tasks,
with the ultimate objective of enabling the generation of behavior-
embedded 3D scenes in a streamlined manner, towards a no-code
authoring pipeline.

ACKNOWLEDGMENTS
The project was partially funded by the National Recovery and Re-
silience Plan "Greece 2.0" - NextGenerationEU, under grant agree-
ment No TAΣΦP-06378 (REVIRES-Med), and Innovation project
Swiss Accelerator under grant agreement 2155012933 (OMEN-E),
supported by Innosuisse.

REFERENCES
[1] E.J. Bayro-Corrochano. 2001. Geometric Neural Computing. IEEE Transactions

on Neural Networks 12, 5 (Sept. 2001), 968–986.
[2] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 4 (2017), 18–42.

[3] Helisa Dhamo, Fabian Manhardt, Nassir Navab, and Federico Tombari. 2021.
Graph-to-3d: End-to-end generation and manipulation of 3d scenes using scene
graphs. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 16352–16361.

[4] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Math-
ieu Aubry. 2018. A Papier-Mâché Approach to Learning 3D Surface Generation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[5] Hugo Hadfield, Eric Wieser, Alex Arsenovic, Robert Kern, and The Pygae Team.
2021. pygae/clifford: v1.4.0. https://doi.org/10.5281/zenodo.5116900

[6] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, et al. 2020.
Strategies for Pre-training Graph Neural Networks. In International Conference
on Learning Representations.

[7] Manos Kamarianakis, Ilias Chrysovergis, Mike Kentros, and George Papagian-
nakis. 2022. Recording and Replaying Psychomotor User Actions in VR. In ACM
SIGGRAPH 2022 Posters. Association for Computing Machinery, New York, NY,
USA, Article 30, 2 pages.

[8] Manos Kamarianakis, Ilias Chrysovergis, Nick Lydatakis, Mike Kentros, and
George Papagiannakis. 2023. Less Is More: Efficient Networked VR Transforma-
tion Handling Using Geometric Algebra. Advances in Applied Clifford Algebras
33, 1 (Feb. 2023), 6.

[9] Yanshan Li, Rongjie Xia, Xing Liu, and Qinghua Huang. 2019. Learning Shape-
Motion Representations from Geometric Algebra Spatio-Temporal Model for
Skeleton-Based Action Recognition. In 2019 IEEE International Conference on
Multimedia and Expo (ICME). 1066–1071.

[10] Qifan Liu and Wenming Cao. 2022. Geometric algebra graph neural network for
cross-domain few-shot classification. Applied Intelligence 52, 11 (2022), 12422–
12435.

[11] Chenglin Miao, Wen Su, Yanqing Fu, Xihao Chen, and Di Zang. 2022. Long-Term
Traffic Speed Prediction Based on Geometric Algebra ConvLSTM and Graph
Attention. 2022 IEEE International Conference on Smart Internet of Things 00
(2022), 108–115.

[12] Yigit Oktar and Mehmet Turkan. 2022. Preserving Spatio-Temporal Information
in Machine Learning: A Shift-Invariant 𝑘-Means Perspective. Journal of Signal
Processing Systems 94, 12 (2022), 1471–1483.

[13] George Papagiannakis, Manos Kamarianakis, Antonis Protopsaltis, Dimitris An-
gelis, and Paul Zikas. 2023. Project Elements: A computational entity-component-
system in a scene-graph pythonic framework, for a neural, geometric computer
graphics curriculum. In Eurographics 2023 - Education Papers. The Eurographics
Association.

[14] Alberto Pepe and Joan Lasenby. 2023. Modeling Orientational Features via Geo-
metric Algebra for 3D Protein Coordinates Prediction. Preprint. Authorea.

[15] Alberto Pepe, Joan Lasenby, and Pablo Chacón. 2022. Learning rotations. Mathe-
matical Methods in the Applied Sciences (2022).

[16] Di Zang, Xihao Chen, Juntao Lei, Zengqiang Wang, Junqi Zhang, Jiujun Cheng,
and Keshuang Tang. 2022. A multi-channel geometric algebra residual network
for traffic data prediction. IET Intelligent Transport Systems 16, 11 (2022), 1549–
1560.

[17] Paul Zikas, Mike Kentros, Dimitris Angelis, Antonis Protopsaltis, Manos Kamar-
ianakis, and George Papagiannakis. 2023. UniSG: Unifying Entity-Component-
Systems, 3D & Learning Scenegraphs with GNNs for Generative AI. Preprint.
Authorea.

[18] Paul Zikas, George Papagiannakis, Nick Lydatakis, Steve Kateros, Stavroula Ntoa,
Ilia Adami, and Constantine Stephanidis. 2020. Immersive visual scripting based
on VR software design patterns for experiential training. The Visual Computer
36 (2020), 1965–1977.

[19] Paul Zikas, Antonis Protopsaltis, Nick Lydatakis, Mike Kentros, et al. 2023.
MAGES 4.0: Accelerating the world’s transition to VR training and democratizing
the authoring of the medical metaverse. IEEE Computer Graphics and Applications
43, 2 (2023), 43–56.

https://doi.org/10.5281/zenodo.5116900

	Abstract
	1 Introduction
	1.1 The importance of GNNs for Generative AI
	1.2 GA and GNNs

	2 UniSG: A Universal SceneGraph
	3 UniSGˆGA: Empowering UniSG with Geometric Algebra
	4 UniSGˆGA within the Elements project
	4.1 Geometric Algebra powered 3D scenegraph

	5 Results
	5.1 Classification
	5.2 Generative AI using UniSGˆGA
	5.3 Topology prediction

	6 Conclusions and future work
	Acknowledgments
	References

