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1 INTRODUCTION

Applications1 of Clifford's geometric algebras (GAs) (Clifford algebras) are quickly increasing in numbers and diversity. In
order to provide an up-to-date survey of the latest applications in mid-January of 2023, we used the Dimensions.ai search
engine for the years of 2022 and 2023 with keywords Geometric Algebra and found 121 publications (articles, preprints,
books, and book chapters) with these keywords in title or abstract. After checking each item for its appropriateness, we
selected 101 of them for this survey. As survey authors, we ourselves made quite a few discoveries of novel applications
we were not aware of so far. We hope readers will have similar moments of surprise. One reason is that Dimensions.ai is
not in any kind of theme— or information bubble—but delivers all results available.

We note that GA has become popularly used in applications dealing with geometry. It allows to reformulate and
redefine problems involving geometry in a highly intuitive and general way. GA was defined thanks to the work of
W. K. Clifford [1] to unify and generalize Grassmann algebra [2] and W.R. Hamilton's quaternions [3] into a universal
algebraic framework by adding the inner product to H. G. Grassmann's outer product. One of the GAs that is often applied
is conformal geometric algebra (CGA). It became better known through Hestenes et al. [4], is well described and illus-
trated in Dorst et al. [5], and in a brief illustrated form in Hitzer et al. [6]. For standard references on GA, we refer to the
following textbooks: earlier studies [5, 7, 8]. A brief introduction for engineers can be found in Hitzer [9], while a compact
definition of GA is given in Falcao and Malonek [10]; see also previous research [9, 11].

1This paper is subject to the Creative Peace License, https://gaupdate.wordpress.com/2011/12/14/the-creative-peace-license-14-dec-2011/, accessed
17 Feb. 2023.
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2 HITZER ET AL.

Following Hitzer [9], any Clifford GA Cl(V) is generated from an inner-product2 vector space (V , a·b ∶ a, b ∈ V → R) by
Clifford's geometric product setting3 the geometric product4of any vector with itself equal to the inner product: aa = a ·a.
We indeed have the universal property [12, 13] that any isometry5 from the vector space V into an inner-product algebra6

 over the field7 K can be uniquely extended to an isometry8 from the Clifford algebra Cl(V) into . The Clifford algebra
Cl(V) is the unique associative and multilinear algebra with this property. Thus, for generalizing methods from algebra,
analysis, calculus, differential geometry (etc.) of real numbers, complex numbers, and quaternion algebra to vector spaces
and multivector spaces (which include additional elements representing all 2D up to nD subspaces, i.e., plane elements
up to hypervolume elements), the study of Clifford algebras becomes unavoidable. Indeed, repeatedly and independently,
a long list of Clifford algebras, their subalgebras, and in Clifford algebras, embedded algebras (like octonions [8]) of many
spaces have been studied and applied historically, often under different names.

Some of these algebras are complex numbers (and the complex number plane), Wessel algebra, hyperbolic numbers (split
complex numbers, real tessarines), dual numbers, quaternions, biquaternions (complex quaternions), dual quaternions,
Plücker coordinates, bicomplex numbers (commutative quaternions, tessarines, Segre quaternions), Pauli algebra (space
algebra), Dirac algebra (spacetime algebra, Minkowski algebra), algebra of physical space, para-vector algebra, spinor
algebra, Lie algebras, Cartan algebra, versor algebra, rotor algebra, motor algebra, Clifford bracket algebra, conformal
algebra, projective geometric algebra (PGA), zeon algebra, algebra of differential forms, and so on; see Hitzer [9].

Regarding the notation of Clifford GAs, a certain variety can be found. A frequently used notation is Cl(p, q, r) for the
Clifford GA of a space Rp,q,r, with dimension n = p+q+ r, with an orthonormal basis of p vectors squaring to +1, q vector
squaring to −1, and r vectors squaring to 0. For example, PGA of three dimensions uses Cl(3, 0, 1). Note that for r = 0,
it is customary to abbreviate R

p,q = R
p,q,0 and Cl(p, q) = Cl(p, q, 0). Furthermore, for q = 0, many authors abbreviate

R
n = R

n,0 and Cl(n) = Cl(n, 0); for example, the GA of three-dimensional Euclidean space R
3 is Cl(3, 0), and CGA for

three-dimensional Euclidean space, extended by a Minkowski type plane R
1,1 is Cl(4, 1). But note that particularly in the

field of Clifford analysis, authors may instead use R
n = R

0,n; it is therefore advisable when reading a publication to first
ascertain which notation the author uses. Moreover, one often finds p,q,r = Gp,q,r = Gp,q,r = Clp,q,r = Rp,q,r, and so on.

The paper is structured as follows, revealing how we clustered and ordered the 101 publications thematically (which
is of course somewhat subjective). First, Section 2 refers the reader to similar earlier survey projects conducted during
the last 10 years. Then, Section 3 provides an overview of applications of GA for mathematics and computations, while
Section 4 introduces applications to higher order surfaces and geometry. Next, Section 5 shows the use of GA for image and
signal processing. This is followed by Section 6 on GA computing and GA software and Section 7 on quantum computing
with GA. Data processing with GA is featured in Section 8, many applications to neural networks in Section 9, and in
Section 10 to the medical field. After that, Section 11 explores applications in physics, that is, mechanics, electrodynamics,
gravity, and quantum physics. The new pioneering applications in electric engineering are surveyed in Section 12 and
control and robotics in Section 13. The paper is concluded with Section 14 and the list of references.

2 PREVIOUS GA APPLICATION SURVEYS

In Breuils et al. [14], the authors present a survey including applications of Clifford GA in the past decade (mainly within
2013-2021), several of which were presented in the Applied Geometric Algebra for Computer Science and Engineering
(AGACSE) conference series, as well as the annual Empowering Novel Geometric Algebra for Graphics and Engineering
(ENGAGE) workshops, which are part of the conference Computer Graphics International. Breuils et al. [14] can be seen
as a continuation of the earlier survey [15] published in 2013, summarizes approximately 200 GA publications.

It is further supplemented by a similar amount of publications on GA applications in Hitzer et al. [16] of early
2022, surveying publications in the years 2019 to 2022. These surveys include GA applications related to engineering,
electric engineering, optical fibers, geographic information systems, geometry, molecular geometry, protein structure,
neural networks, artificial intelligence, encryption, physics and software as well as signal, image, and video processing.

2The inner product defines the measurement of length and angle.
3This setting amounts to an algebra generating relationship.
4No product sign will be introduced; simple juxtaposition implies the geometric product just like 2x = 2 × x.
5A K-isometry between two inner-product spaces is a K-linear mapping preserving the inner products.
6A K-algebra is a K-vector space equipped with an associative and multilinear product. An inner-product K-algebra is a K-algebra equipped with an
inner product structure when taken as K-vector space.
7Important fields are real R and complex numbers C and so on.
8That is a K-linear homomorphism preserving the inner products; that is, a K-linear mapping preserving both the products of the algebras when taken
as rings and the inner products of the algebras when taken as inner-product vector spaces.
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HITZER ET AL. 3

3 GA FOR MATHEMATICS AND COMPUTATION

This section is divided into three topical parts: the mathematical structure of GA, application of GA to mathematical
problems, and GA-based computing.

The first part consists of papers where the authors study the objects of GA, that is, geometric entities or transformations
and functions. Thus, Bayro-Corrochano et al. [17] revisit a proposal for the formulation of objects and geometric relations
and constraints in CGA and discuss its application to various engineering disciplines. Representations of transformations,
rotors in particular, are then searched for by Lasenby et al. [18] in the form of their reconstruction from initial and final
frames. A series of papers by Acus Arturas et al. is handling the closed-form exponentials of multivectors in general
dimension [19] with additional conditions on the GA signature, both in low dimensions [20] and generally in Dargys
and Acus [21], respectively. In algebras of dimension n less than six, more maps such as normalization, square roots, and
exponential and logarithmic maps are treated by De Keninck and Roelfs [22]. As for the operations on GA, Stejskal et al.
[23] provide a comprehensive description of relations between objects in 2D space using the matrix product of vectors,
the geometric product, and the dot product of complex numbers. Finally, structural issues of the embedding of octonions
in GA of all signatures in three and four dimensions are treated by Hitzer [24].

The second part is perfectly represented by a paper of Ramírez et al. [25] where Lyapunov stability theory for smooth
nonlinear autonomous dynamical systems is presented in terms of GA or the paper by Abdulkhaev and Shirokov et al. [26]
where basis-free formulae for characteristic polynomial coefficients are derived in terms of GA. Structural mathematical
concepts, such as the generalization of Lipschitz and spin groups, or twisted algebras of GA are targeted by Filimoshina
and Shirokov [27] and Matsuno [28], respectively.

In the last category, the paper by Stephane Breuils et al. [29] discusses the complexity of products in GA, more precisely
the number of operations required to compute a product, in a dedicated program for example, and the complexity of
enumerating these operations.

4 GA FOR SURFACES AND GEOMETRY

In his new book Mathematics for Computer Graphics [30], Vince explains a wide range of mathematical techniques and
problem-solving strategies associated with computer games, computer animation, virtual reality, CAD, and other areas
of computer graphics (CG). Among the list of worked examples and color illustrations revolving around the mathematics
required for CG, the author dedicates a chapter to introduce the basic notation and functionality of GA, as an extension
of the complex numbers and quaternions that were described in detail in previous sections. The introduction to GA is
performed in the author's characteristic descriptive manner and along with the numerical examples lure the reader to
this exciting new world of multivectors.

The GA G6,3 = Cl(6, 3), also denoted as Quadric Geometric Algebra (QGA), is a known generalization of CGA.
Esquivel[31] provides the description of common geometric entities, for example, points, planes, and spheres and also
(hyperbolic and parabolic) cylinders, elliptic cones, or ellipsoids. The rotation and revolution of points and quadratic
primitives, as well as the vanishing coordinate frame {e∞x, e∞𝑦, e∞z}, are described in detail, providing better insight
of QGA.

As the interpolation of the trajectory of points and geometric entities remains an important problem for kinematics
(e.g., movement for robots), several algorithms exist to describe such trajectories, often involving the use of matrices,
quaternions, dual quaternions, and the study quadric. Martinez-Terán et al. [32] exploit CGA to represent motors as 8D
vectors in projective space P

7, thus reducing the interpolation of rotations and translations to a linear problem. A CPU
and a GPU (CUDA) implementation were tested to obtain performance metrics, and the methodology was applied to
interpolate trajectories in medical robotics for kidney surgery.

Towards an effective generation of molecular surfaces, Alfarraj and Wei [33] employ Clifford Fourier transforms (CFT),
a generalization of the classical FT. Using the CFT in R3 = Cl(3, 0) allows solving partial differential equations and
specifically the ones involved in the mode decomposition process. After setting the theoretical background, authors
apply the proposed method to small molecules and proteins, generating their surfaces and comparing their output with
other definitions. The importance of their work is further highlighted, as their methodology can be applied for protein
electro-static surface potentials and solvation free energy, as well as other biological sciences.
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4 HITZER ET AL.

Using quaternion operators on orbits (curves or surfaces) in the Euclidean space E
3 and its GA Cl(3, 0), Aslan and

Yayli [34] demonstrate how to generate these orbits from points, curves, or surfaces. An explicit form of the motions
that achieves this is proved and provided as one- or two-parameter homothetic motions, along with detailed numerical
examples.

Identifying sphere intersections is a simply-to-state yet important core problem of many applications, among a variety of
scientific fields, for example, data sciences and 3D protein structure determination. When the radii of the spheres are not
known, the notion of a spherical shell can be employed, by replacing the precise radii with interval values. Considering the
intersection of spheres and/or spherical shells in higher dimensions, Lavor et al. [35] provide a methodology to identify
and characterize them. A comparison of the theoretical approaches via linear algebra or CGA is provided and illustrated
with numerical examples. The result of this comparison further highlights the ability of CGA to naturally preserve the
geometric intuition of the problem, even in dimensions higher than three.

To view fractal-based devices not as a problem only related to high-tech innovation but also related as a marketing
problem, Mukhopadhyay [36] tracks the development of fractal information theory using a universal geometric musical
language and a 12-dimensional GA. It explores how fractal decision-making can be used in the fields of business analytics,
security for risk mitigation, and healthcare. See also [37–39].

5 GA FOR IMAGE AND SIGNAL PROCESSING

Hitzer [40] generalizes the spacetime Fourier transform (SFT) of Hitzer [41] to a special affine Fourier transform (SASFT,
also known as offset linear canonical transform) for 16-dimensional spacetime multivector Cl(3, 1)-valued signals over the
domain of spacetime (Minkowski space) R3,1. This includes computation in terms of the SFT, its properties of multivector
coefficient linearity, shift and modulation, inversion, Rayleigh (Parseval) energy theorem, partial derivative identities, a
directional uncertainty principle, and its specialization to coordinates.

Zhang et al. [42] observe that the complex-valued random Fourier GA mapping (CRFGAM) method can solve the
overcoupling issue of real and imaginary parts for complex-valued signals. In order to improve the accuracy of nonlin-
ear mapping in the CRFGAM method, they propose a multidimensional complex-valued random Fourier GA mapping
(MDCRFGAM) method by expanding CRFGAM to a multidimensional mapping space and extend this to a multidimen-
sional complex-valued random Fourier GA least mean square (MDCRFGALMS) algorithm. Related to this, Huang et al.
[43] propose a novel fixed dimensional adaptive filter for complex-valued signals named complex-valued random Fourier
GA least mean square (CRFGALMS). With GA adaptive filtering, real and imaginary parts of complex-valued signals are
mapped to random Fourier features space (RFFS) to improve the efficiency of the nonlinear mapping for complex-valued
signals. The proposed GA-based mapping has superior presentation abilities in the complex-valued domain and decou-
ples the nonlinear mapping of real and imaginary parts of complex-valued signals. In both cases, simulations on nonlinear
channel equalization are conducted for validation.

Xiangyang Wang et al. [44] present two novel GA methods to estimate two-dimensional (2D) directions-of-arrival (DOA)
of noncircular (NC) signals for uniform rectangular arrays (URA). Traditional long vector methods inevitably lose orthog-
onality inside each electromagnetic vector sensor (EMVS) and miss information of second-order statistical properties and
increase computational complexity. New GA-based estimating of signal parameters via rotational invariance techniques
(ESPRIT) and propagation method (PM) algorithms are proposed. GA maintains the relationship among multidimen-
sional signals. The six EMVS components are represented as a GA multivector, and a GA-based extended covariance
matrix utilizes the signal information more completely. The new GA estimation of signal parameters via rotational invari-
ance techniques for NC signal processing (GANC-ESPRIT) yields the DOA with high accuracy. The new GA PM for NC
signal estimation (GANC-PM) uses linear transformations to calculate angle parameters. Memory requirement is greatly
reduced versus long vector methods. Simulations validate good angular resolution, and complexity analysis shows better
performance with reduced computation.

Wang et al. [45] propose two novel GA-based adaptive filtering algorithms based on the minimum error entropy (MEE)
criterion and the joint criterion (MSEMEE) of MEE and the mean square error (MSE). Simulation results show that for the
mean square deviation (MSD) learning curve, the GA-based MEE (GA-MEE) algorithm has faster convergence rate and
better steady-state accuracy compared with the GA-based maximum correntropy criterion algorithm (GA-MCC) under
the same generalized signal-to-noise ratio (GSNR). The GA-MEE algorithm reduces the convergence rate but improves the
steady-state accuracy by 10–15 dB compared with adaptive filtering algorithms based on GA and second-order statistics.
When GA-MSEMEE and the adaptive filtering algorithms based on GA and second-order statistics, respectively, keep the
same convergence rate, its steady-state accuracy is improved by 10–15 dB, and when GA-MSEMEE and GA-MEE maintain
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HITZER ET AL. 5

approximately steady-state accuracy, its convergence rate is improved by nearly 100 iterations. For noise cancelation,
the average recovery error of the two new algorithms improves over other GA-based adaptive filtering algorithms. This
provides new methods to deal with multichannel interference in wireless networks.

Wang and Wang [46] observe that GA-based adaptive filters have been applied to fields like 3D wind speed, computer
vision, and fusion prediction of dynamic pressure. To further improve performance, they propose GA adaptive algorithms
convexly combining two different step size GA least mean square algorithms (CGA-LMS) and provide detailed steady-state
performance analysis. To address the phenomenon that the slow filter may lag considerably behind the fast filter,
which slows down the overall convergence of the combined GA filter, they add a novel instantaneous transfer strategy,
creating a CGA-LMS algorithm with transfer strategy (CGA-LMS-TS). To process the NC 3D and 4D signals, they employ
a convex combination of a widely linear GA-LMS (CWL-GA-LMS) algorithm with a CWL-GA-LMS with transfer strategy
(CWL-GA-LMS-TS). Simulations validate performance and correctness.

Derevianko and Loucka [47] introduce a search for the similarity transformation of two-dimensional point clouds using
GA for conics (GAC). They represent image objects by ellipses fitted into contour points. This speeds up consequent
similarity search and saves memory. Examples with real object images are included.

Liu et al. [48] propose a GA product expression associated with geometric relationships of vectorized THz refractive
index and absorption coefficients. From this expression, candidate characteristic parameters are extracted for liquids
discrimination presenting abundant second-order correlation information of optical parameters with rising dimensions.
Three groups of liquids, containing C-reactive protein calibrators and alpha fetoprotein calibrators, were used for
validation. Comparing with traditional THz parameters of refractive index, absorption coefficient, and complex
permittivity, the novel approach is superior in differentiation with the evaluation of statistical differences and effect size.

Calado et al. [49] compare two new geometric model-based approaches to gesture recognition which support the
visualization and geometrical interpretation of the recognition process, with two classical ML algorithms, k-nearest
neighbor (k-NN) and support vector machine (SVM), and two state-of-the-art (SotA) deep learning (DL) models,
bidirectional long short-term memory (BiLSTM) and gated recurrent unit (GRU), on an experimental Italian Sign
Language (LIS) data set. They achieve a compromise between high recognition rates (>90%) and fast recognition times
(<0.1 s) adequate for human–computer interaction.

We note that in Section 8, the reader will find information on application to geographic data, GA-based collaborative
filtering, enhanced knowledge graph embedding, and secret sharing.

6 GA FOR COMPUTING AND SOFTWARE

Aiming to educate both GA experts and people that are not yet acquainted with the concept of multivectors, Hildenbrand
and Rockwood [50] gave a SIGGRAPH course presentation9 touching various aspects of GA. After a motivating
introduction to the work of Grassmann and Clifford, they provided the deep connection between algebra and geometry
that holds for the entities of such mathematical frameworks, as well as basic notation and properties. After describing in
more detail the two dominant GAs, namely, projective GA (PGA) and CGA, the GAALOP software framework is used to
perform various operations. Specifically, GAALOP and its web version, GAALOPWeb, is a well-known software dedicated
to optimize GA files. Its usage is demonstrated in a straightforward way for both PGA and CGA, to perform numerical
operations as well as to obtain visual results. This work concludes with the presentation of GAC, an algebra that has
become increasingly popular due to a diverse range of applications.

By analyzing the majority of approaches used by logicians to support a mathematical claim, one may deduce that there
are two ways that a computer can help establish a claim: It can either help find a proof in the first place (automated
theorem proving) or it can help verify that a purported proof is correct (interactive theorem proving).

The lean theorem prover aims to bridge the gap between interactive and automated theorem proving, by situating
automated tools and methods in a framework that supports user interaction and the construction of fully specified
axiomatic proofs. Wieser and Song [51] recently presented the partial formalization of GA in Lean via describing
multivectors as the quotient of a tensor algebra by a suitable relation, in a basis-agnostic manner. Although not complete
yet, their work10 is applicable to GA of various dimensions and sets the bases for a complete GA formalization within the
promising mathlib library, in a future proof and easy-to-extend way.

9The complete presentation is available online (https://dl.acm.org/doi/10.1145/3532720.3535655).
10This work can be found online (https://github.com/pygae/lean-ga).
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6 HITZER ET AL.

In the past decades, quaternions have been the dominant representation form for rotations in the CG pipeline, along
with the use of matrices and vectors to store translations and scalings. Although there is concrete evidence that the use of
more advanced forms such as dual quaternions and multivectors (for motors, rotors, and dilators in PGA and CGA) can
alleviate commonly appearing rendering artifacts, such as the candy-wrapper effect, these forms are usually not incorpo-
rated in the modern CG curriculum, mainly due to the lack of support from the frameworks used. Papagiannakis et al.
[52] present the Elements project, a pythonic framework that is based on the entity-component-system principle on top
of a scene graph-based implementation. Using Elements, users may create and render a 3D scene, using transformation
data that are either of the traditional form, that is, a TRS matrix, or any other potential form, such as quaternions, dual
quaternions, or multivectors. See also [53, 54]

7 GA FOR QUANTUM COMPUTING

Hrdina et al. [55] investigate the representation of n-qubits and quantum gates acting on them as elements of a complex GA
defined on a complex vector space of dimension 2n. In such spaces, the Dirac formalism can be realized straightforwardly.
Aiming to establish GA as a major language for quantum computing, the authors introduce the noncomplex Quantum
Register Algebra (QRA) [56] and exploit the GAALOP (Geometric Algebra Algorithms Optimizer) framework to perform
numerical operations. Their latter work proves advantageous for quantum computing beginners since they only have to
know GA in order to intuitively describe the objects and operations of quantum computing.

In the same context, Soiguine [57] demonstrates how the the double split experiment results can be resolved with
diffraction patterns inherent to wave diffraction. In his work, he exploits the GA formalism along with generalization
of complex numbers and subsequent lift of the two-dimensional Hilbert space-valued qubits to geometrically feasible
elements of an even GA subalgebra. See also [58].

8 GA IN DATA PROCESSING

Addressing the demand for multilevel declassification of geographic vector field data (GVFD), Luo et al. [59] employ GA
to uniformly express it as a GA object and then sequentially apply a rotor and a perturbation operator. Declassifying the
final output and comparing it to the input shows that despite the alteration of the original vector field, some general
geo-spatial features are retained. This approach offers effective multilevel controls and has good randomness; it suggests
a viable solution for data disclosure, secure transmission, and encapsulation storage of such types of data.

Jiang et al. [60] conducted an analysis of the spatial geometric similarity computation based on CGA, aiming to shed
light on spatial analysis and data retrieval. By (a) developing a unified expression model for spatial geometric scenes,
(b) integrating shapes of objects and spatial relations between them, and (c) establishing a model for spatial geometric
similarity computation, they are able to derive measurement information and topological relations of spatial objects. Their
method involves simple inner, outer, and geometric product operations and can be applied to retrieve spatial scenes with
objects of different types, yielding satisfying results.

As the world is evolving from a binary space to a ternary space, a suitable framework to capture diverse geographic
information is required. The seven-dimensional framework proposed in Lv et al. [61] exploits a form of GA representation
that is suitable to represent characteristics such as semantics, attribute, interrelationship, and interplay mechanisms,
which are usually unstructured and cannot be represented as plain geometries or simple algebraic equations.

Wu et al. [62] propose a GA-based collaborative filtering model for recommendation, based on representation learning.
Their methodology involves the usage of multivectors to represent users and items, while plain geometric and inner
product operations are used to indicate the historical interaction between users and items. Training the model with the
resulting multivectors, interdependencies between components of multivectors can be predicted, allowing more complex
interactions between users and items to be captured.

A quite intriguing area where GA proves to yield enhanced results involves KGE, which introduces important
challenges for knowledge representation learning such as the management of time-evolving data nodes. Link prediction
tasks in KGE have shown promising performance, especially due to complex or hypercomplex representation forms.
Xu et al. [63] present a GA-based approach that achieves or even surpasses the state-of-the-art performance threshold.
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HITZER ET AL. 7

Their approach involves data representation as multivectors of G2 = Cl(2, 0) or G
3 = Cl(3, 0), as well as a GA-based

model that consumes the obtained data set. This novel, yet effective, approach for KG, manages to successfully handle
the temporal KGE completion problem, by exploiting the geometric meaning of the time embedding.

A variant of the well-known threshold secret sharing scheme proposed by Adi Shamir in 1979 is presented in Silva
et al. [64]. Its methodology involves using multivector objects to be secrets in a secret sharing scenario without incurring
any additional overhead in comparison with the reference scheme. Fundamental computations such as addition and
multiplication can be performed over random shares, making this approach ideal to use the context of multisecret sharing.
As both secret and random shares of members are members of the same space, the fundamental property of Shamir's
scene, idealness, is also preserved.

We note that in Section 5, the reader will find a discussion of GA applications to integral transforms of spacetime signals,
CRFGAM, direction of arrival problems, GA-based adaptive filtering, point cloud similarity, vectorized THz data, and
gesture recognition. See also [65].

9 GA APPLIED TO NEURAL NETWORKS

GA seems to be well-suited regarding the representation of multidimensional data. Expressing such data in multivector
form, Li et al. [66] were able to capture the inherent structures and preserve the correlation of multiple dimensions in the
context of a long and short-term time series network that processes multivariate time series. Their method outperforms
traditional techniques with higher prediction accuracy.

Following a similar approach, Li et al. [67] propose a GA-based mapping of each spectrum in a hyperspectral image
(HSI); the multivectors derived are then used in a convolutional neural network (CNN) that deals with multichannel HSIs.
In such an approach, increased performance, less overfitting risks, and better information preservation were achieved
with respect to identical real-valued CNNs.

As graph neural networks become increasingly popular, the authors of Liu and Cao [68] proved that graph feature
embedding in GA can improve the quality of graph feature presentation. Using a few shot cross-domain classification task
as application, their proposed approach yields improved results over metric-based methods as it uses the high algebraic
dimensions of GA to reduce the distortion of feature information despite the increased hidden layers.

The paper [69] establishes a parametrization of hypercomplex convolutional layers and introduces a family of
parametrized hypercomplex neural networks (PHNNs) that are lightweight and efficient large-scale models. Convolution
rules and the filter organization are directly inferred from the data without requiring a rigidly predefined domain struc-
ture. PHNNs operate flexibly in any user-defined or tuned domain, from one to n dimensions, regardless of whether the
algebra rules are preset. This allows processing multidimensional inputs in their natural domain without annexing fur-
ther dimensions, as done, instead, in quaternion neural networks (QNNs) for three-dimensional inputs like color images.
As a result, the proposed family of PHNNs operates with 1∕n free parameters compared with the real domain. For image
and audio datasets better performance than real and quaternion-valued counterparts is shown.

Robust and efficient transmission of data over networks is crucial for collaborative AR/VR applications. In such a
context, the authors of Kamarianakis et al. [70] compare traditional representation forms (vectors and matrices) with
GA-based forms (quaternions, dual quaternions, and PGA/CGA multivectors) for transmission, recording, and replay
purposes. Their work suggests that, regarding transmission, GA is the only viable solution for poor network conditions and
yields better or on par results when no such conditions occur. It is also shown that, using GA forms, less transformation
data per second can be recorded without impacting the interpolated keyframes during replay.

Regarding computer-vision oriented deep learning techniques, GA is a great means to capture rotational data that
constantly appear, as many of the related tasks such as pose estimation from images or point clouds can be formulated
as a regression on rotations. Overcoming limitations posed by commonly used representations, Pepe et al. [71] exploit
multivectors to reduce errors in high-noise datasets, while learning fewer parameters.

The work [72] introduces Pin (p, q, r) group action layers, which linearly combine object transformations. Together
with a new activation and normalization scheme, these layers serve as adjustable geometric templates that can be refined
via gradient descent. Theoretical advantages are strongly reflected in the modeling of three-dimensional rigid body
transformations as well as large-scale fluid dynamics simulations, with significantly improved performance.

With the development of cities and the increased demand for traffic management, predicting traffic data have become
an increasingly researched yet complicated task due to changeable and complex traffic conditions.
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8 HITZER ET AL.

By capturing related traffic information as multivectors, the multidimensionality of the data can be maintained and
complex features can also be extracted in the context of spatio-temporal attention neural networks [73], multichannel
residual networks [74], generative adversarial networks [75], or graph attention networks [76]. These works suggest an
improvement of performance when GA-based forms are used compared with real data-based implementations and are
suitable to predict even long-term features such as the traffic speed for a whole day.

Alongside algorithmic advances in neural networks, new technological paradigms are developed where machine and
deep learning techniques are incorporated in dedicated hardware. Such an example is described in García-Limón et al.
[77], where a hypersphere neural network for energy consumption monitoring, based on GA representation of points and
hyperspheres, is implemented in an IoT device, consisting of a NodeMCU board and an Esp8266 microcontroller.

Towards solving the problem that derives from nonorthogonal data attributes in conventional machine learning
applications, Oktar and Turkan [78] propose a shift-invariant k-means methodology. The authors suggest the use of
complex, hypercomplex, and GA-based approaches and encoding schemes, to better capture invariance under rotation or
general transformations, via convolution operators that preserve spatio-temporal information.

GA-based neural networks also find applications in the medical field.

10 GA IN MEDICAL SCIENCE

GA is able to positively impact the majority of scientific areas, including the medical sciences. A good example is provided
in Tu et al. [79] where the most common neurodegenerative disorder, the Alzheimer's disease (AD), is considered.
Introducing a GA-based multimodal feature transformation and fusion model, a fast-convergent artificial neural network
framework can provide a highly accurate AD diagnosis.

Further proving that high-dimensional information can be more efficiently handled via GA, Wang et al. [80] propose
a multimodal medical image fusion algorithm based on a discrete GA cosine transform. In their work, they conduct
fusion experiments on four groups of brain medical color images, by considering the connection between the color image
channels and using multivectors to represent the source image. Results indicate improved performance, but only marginal
advantage compared with traditional algorithms, thus leaving room for future improvements.

A similar technique is exploited in Li et al. [81] where GA is employed for (a) a multimodal medical image fusion
algorithm, (b) an orthogonal matching pursuit algorithm, and (c) a K-means clustering singular value decomposition
algorithm. All these components are involved into an effective algorithm that avoids losing the correlation of color
channels of medical images and surpasses the state-of-the-art approaches in terms of subjective and objective quality
evaluation.

GA is also employed in the context of modern applications that impact the medical training landscape. Zikas et al.
[82] propose MAGES 4.0, a novel Software Development Kit (SDK), to accelerate the creation of collaborative medical
training applications in VR/AR. Their solution is essentially a low-code metaverse authoring platform for developers to
rapidly prototype high-fidelity and high-complexity medical simulations. Among the variety of novelties it incorporates,
this Unity3D-based framework exploits GA-based representation forms, namely, dual quaternions and multivectors, to
efficiently transmit user actions over the network in multi-user collaborative scenarios. Exploiting the mechanisms
described in Kamarianakis et al. [70], its under-the-hood GA interpolation engine achieves optimal performance
compared with state-of-the-art. The same engine and all-in-one GA framework is also employed to effectively record and
replay VR/AR sessions.

See also the discussion of Alfarraj and Wei [33] and Martinez-Terán [32] in Section 4. See also [83].

11 GA IN PHYSICS

11.1 Mechanics
Jensen and Poling [84] describe angular momentum with Cl(3, 0) bivectors, visualized as tiles with area and orientation
whose components form an antisymmetric matrix. Bivectors have historically been considered mostly in specialized
contexts like spacetime classification or GA but are no more complicated than cross products. Teaching rotational
physics in this language is ultimately viewed more fundamental and helps to understand rotations in relativity and extra
dimensions.
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HITZER ET AL. 9

According to Brechet [85] in Cl(3, 0), the Poisson formula for the time derivative of unit vectors of a moving frame is
expressed by the angular velocity bivector and applied to cylindrical and spherical frames. The rotational dynamics of a
point particle and a rigid body are fully determined by the time evolution of Cl(3, 0) rotors. The mapping of the angular
velocity bivector onto the angular momentum bivector is the inertia map. It is characterized by symmetric coefficients
(moments of inertia) in the (rigid body) principal axis frame. The Huygens–Steiner theorem, the kinetic energy of a rigid
body and the Euler equations are expressed in terms of bivector components. The rotational dynamics of a gyroscope
provides an example.

Ikemori et al. [86] formulate the Runge–Lenz vector in the Kepler problem as a three-dimensional GA projection of a
SO(4) moment map that acts on the phase space of a four-dimensional particle motion. The Runge–Lenz vector originates
from geometric symmetry of R4 × R

4 phase space.

11.2 Electrodynamics
Brechet [87] treats electrodynamics of electric charges and currents in vacuum and dielectric and magnetic material
media, using Cl(3, 0) and STA Cl(1, 3). With a polarization multivector and an auxiliary electromagnetic field multivec-
tor, Maxwell's equation is formulated in a material medium in Cl(3, 0) and in STA with an extra bound current vector.
The wave equation in a material medium is obtained from the gradient of the Maxwell equation. For a uniform electro-
magnetic medium of induced electric and magnetic dipoles, the stress-energy momentum vector is formulated with the
electromagnetic force density vector as inhomogeneity, and the Maxwell equation in a material medium is written in STA
as vector potential wave equation.

According to Sen [88], STA provides an invariant description of electromagnetic theory, without reference to any inertial
system. Using elementary geometric calculus, STA allows the direct analytical introduction of magnetic monopoles and
renders the equations for both constituent fields, symmetric, and inhomogeneous. STA unifies the Lorentz force equation
and the electromagnetic power equation.

11.3 Gravity
Noticing that the even subalgebras of Cl(3, 1) and Cl(1, 3) can algebraically not be distinguished, Wu [89] provides a signa-
ture invariant treatment of general Lorentz boosts and general spatial rotations in arbitrary planes. For a massive particle,
the spacetime splits of the velocity, acceleration, momentum, and force four-vectors with the normalized four-velocity
of the fiducial observer, at rest in the coordinate system of the spacetime metric, are given, where the proper time of
the fiducial observer is identified, and the contribution of the bivector connection is considered, and with these results,
a three-dimensional analog of Newton's second law for this particle in curved spacetime is achieved. As example, in
Lense–Thirring spacetime, the signature invariant precessional angular velocity of a gyroscopic spin is derived in STA.

Xu [90] discusses in STA gravitational wave solutions of the gauge theory of gravity field equations with a negative
cosmological constant and shows that these solutions are of Petrov type-N. He also discusses the velocity memory effect
by calculating the velocity change of an initially free falling massive particle due to the presence of gravitational waves.

11.4 Quantum physics
Because geometric algebra of spacetime (STA) is isomorphic to the 4×4 complex Dirac matrix algebra of Dirac's equation
for relativistic electrons, applications of geometric algebra to quantum mechanics have a long and rich tradition.

Hamilton [91] shows how it is possible to start with row and column spinors and their products which include GA
multivectors to construct a super GA for both spinors and GA, thus viewing fermions (spinors) as truly fundamental and
expressing the exclusion principle as elementary spinor product rule. Lasenby [92] embeds octonions11 in STA such that
the octonion product norm corresponds to the preservation of the timelike part of a particle Dirac current. This allows
to embed and geometrically interpret earlier work of particle physics based on octonions. Furthermore, SU(3) of six
Euclidean dimensions can also be embedded in STA based on bivector norm preservation. Finally, interesting connections
to G2 and SU(8) are considered.

Zatloukal [93] examines the minimal coupling procedure in Hestenes' STA Dirac equation, where spinors are identi-
fied with even multivectors, and finds a non-Abelian generalization of the electromagnetic gauge potential. Marks [94]
observes that real GAs Cl(n; s) = Cl(p, q), s = p−q, are periodic in s, that is, Cl(n; s) ≅ Cl(n; s+8k) for p+4k ≥ 0, p−4k ≥ 0,

11See the further expansion of this embedding of octonions in other GAs in Hitzer [24] discussed on page 6.
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10 HITZER ET AL.

and recursive in n, that is, Cl(n; s)⊗Cl(2; 0) = Cl(n+2; s). Moreover, in GA, two-dimensional Euclidean planes and space-
time Minkowski planes have isomorphic GAs. Their direct product gives STA. A further product algebraically describes
strong forces and then generates a lattice with standard model physics at each node. This implies Noether's theorem
conservation laws from uniformity of spacetime based on the recursive generation.

Soiguine [95] begins by replacing complex numbers by real GA multivectors, achieving clear explanations of atoms as
a kind of planetary system. The three-sphere S3 hosts torsion-like states eliminating abstract Hilbert space vectors. S3

points evolve, governed by the updated Schrödinger equation, and act in measurements on observables as operators.
In Soiguine [96], he furthermore explains double split experiments in GA, where particles create diffraction patterns

inherent to wave diffraction, eliminating a key difficulty in the interpretation of quantum mechanics.
Andoni [97] uses the spin-position decoupling approximation, to substitute the Pauli vector-matrix spin model by a

vector with a phase in 3D orientation space endowed with GA. He explains the resulting properties, including measure-
ment irreversibility, entanglement, and 2D in 3D spin space embedding. The formalism appears in two complementary
“spinor” or “vector” forms, providing a clear geometric picture of spin correlations and transformations entirely in the
3D physical orientation space.

Trell [98] examines Marius Sophus Lie's 1871 PhD thesis Over en Classe geometriske Transformationer, relates it to
Hermann Grassmann's Ausdehnungslehre (1844/1862) and William Kingdom Clifford's Space-theory of Matter (1876), and
develops a concrete cellular automaton building kit of the standard model organized as structuralR3×SO(3)wave-packets,
both inwards from the elementary particles and outwards via the periodic table of the atoms over further hierarchical
growth in molecular and crystal stages to an isotropic space-filling of the whole classical Euclidean Universe in harmonic
exchange with its relativistic spherical moiety, dark mass, and energy.

Christian [99] tries to further explain his model for local origins of quantum correlations, assumed to be rooted in GA,
and to defend it against some criticism. See also [100].

12 GA FOR ELECTRIC ENGINEERING

Eid and Montoya [101] explore the concept of generalized geometrical frequency in electrical systems with an arbitrary
number of phases by using GA and differential geometry. With the Darboux bivector concept, they can find a bivector
that encodes the invariant geometrical properties of a spatial curve named electrical curve. The traditional concept of
instantaneous frequency in power networks can be intimately linked to the Darboux bivector. Several examples illustrate
this result.

Eid and Montoya [102] then present a new GA framework for a systematic generalization of well-known instantaneous
transformations used in electrical engineering for power system analysis and computing through geometric principles.
By introducing the Kirchhoff vector and Kirchhoff subspace, a new generalized transformation is presented that unifies
the Clarke, Park, or hyperspace vector transformations (widely used in electrical engineering) as particular cases. A gen-
eralization to an arbitrary number of phases is achieved. All the underlying ideas are presented by means of space-like
conceptualizations, substantiated by their corresponding algebraic formulation. This proposal has wide ranging power
system applications such as to electrical machines, current compensation, power quality, electronic converters, or trans-
mission lines. Preliminary results show superior efficiency compared with matrix methods. Some real-world examples
are included.

Montoya et al. [103] establish an alternative physical formulation for the harmonic power flow in electrical systems
provided by GA, the Poynting vector (PV), and the Poynting theorem (PT). Given the traditional definition of PV (Abraham
approach) as cross product of electric and magnetic field vectors, they exploit the duality of the cross product to the
much more powerful wedge product of exterior algebra. Using vector space concepts, they develop a completely GA-based
approach founded on top of the isomorphism among periodic time-domain signals and Euclidean spaces. This sheds light
on the long-running discussion of electric power flow in nonsinusoidal and nonlinear electrical power systems.

Then Montoya et al. [104] for the first time model power flows in electrical circuits in a mixed time-frequency domain
by using GA and the Hilbert transform. They overcome some of the limitations of the existing methodologies, in which the
so-called active current may not lead to the lowest root mean square (RMS) current under distorted supply or unbalanced
load. Moreover, this current may contain higher levels of harmonic distortion compared with the supply voltage. The
proposed method can be used for sinusoidal and nonsinusoidal power supplies, nonlinear loads, and single-phase and
multiphase electrical circuits, and it provides meaningful engineering results with a compact formulation. It can also
serve as an advanced tool for developing algorithms in the power electronics field. Several examples verify the approach.
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HITZER ET AL. 11

The circuit analysis approach based on GA and M and the power definition based on the geometric product between the
voltage and the current multivectors are used by Castro-Núñez et al. [105] to demonstrate shortcomings of the traditional
definition of the nonsinusoidal apparent power S. The shortcomings of S are illustrated as follows: firstly, by showing an
example of how the norm of M contains S; secondly, through six experiments that involve compliance with: Kirchhoff's
circuit laws, Tellegen's theorem, the principle of conservation of energy, the equivalency of two terminal networks, and the
concept of reactive power compensation; and lastly, by showing how the use of S leads the current's physical component
power theory astray. The experiments show contradictions between the aforementioned circuit theory fundamentals and
the results attained with S but a compelling harmony with the results attained with M. The evidence reveals (1) that
mathematical models aimed at explaining energy flow in nonsinusoidal circuits should not be based on the traditional
decomposition of S and (2) the inappropriateness of extrapolating definitions from sinusoidal to nonsinusoidal settings.

Finally, Sundriyal et al. [106] show that for linear and nonlinear nonsinusoidal circuit conditions, a consensus can be
reached on norms that comply with well-known, established standards. They compare the use of the harmonic domain
and GA in circuits with disturbances for sinusoidal and nonsinusoidal excitations in order to demonstrate the accuracy
of GA in power flow calculations.

13 GA FOR CONTROL AND ROBOTICS

In previous years, GA has been used mostly to unify various frameworks of screw theory, Lie algebra, and dual quater-
nions. Even now, papers on specific aspects of motion descriptions may be found; see, for example, Ben Cross et al. [107].
The simplicity of motion, that is, Euclidean transformations and their interpretation have been heavily used in robot
kinematics. Indeed, papers providing description of robotic motion planning are, for example, Jesús Medrano-Hermosilo
et al. [108] for 6-DOF serial robot's forward kinematics or Edgar Macias-Garcia et al. [109] solving the inverse position
kinematics for n-degrees-of-freedom kinematic chains with revolving joints, and similarly, Lechuga-Gutierrez et al. [110]
present a set of generalized iterative algorithms for these mechanisms. A planar three-revolute (3R) serial chain motion
generation by establishing the relative kinematics model based on CGA is introduced in Lei Wang et al. [111]. Finally, a
new coordinate-invariant geometric constraint equation for 3-RPR planar parallel mechanisms is elaborated by Zhu et al.
[112].

Recently, specific GA algorithms focusing on various robotic mechanisms have been developed. Thus, for instance,
Li et al. [113] propose a novel 6-DOF platform for pose adjustment of heavy equipment. Also, kinematics of various
types of serial robots have been designed in GA; see Tong et al. [114] for a study of spherical 2R mechanism in order to
design a seedling pick-up mechanism or Xu [115] for a design of a new parallel manipulator with two rotational and one
translational motion. Dynamics of novel robotic mechanisms is also solved in GA; see, for example, Song et al. [116] for
dynamic modeling and generalized force analysis of a three-(rotation pair)-(prismatic pair)-spherical pair (3-RPS) parallel
mechanism.

In combination with questions of kinematics, associated problems are solved in GA too. For instance, singularities of
serial robots are tackled by Zaplana et al. [117], and binocular visual control for a 6-DOF robotic manipulator is described
by Stodola et al. [118]. Apart from the control for specific robots or associated problems, there is a group of papers that
generalize the concept of kinematic chains in terms of GA. Thus, Zaplana et al. search for closed-form solutions for
the inverse kinematics of serial robots [119], and Kalkan et al. [120] introduce the study variety of conformal (CGA)
kinematics, that is, a generalization of the study quadric model of rigid body kinematics.

To spread the information about GA, authors integrate new methods and models with standard approaches. Thus, the
connection between GA and control on Lie groups is discussed by Hrdina et al. [121], and Bayro-Corrochano et al. [122]
show the importance of the Hamiltonian in control theory in terms of GA.

A relatively new type of kinematics studied by means of GA is one of machining with three or five axis. Although the
algorithms are not too complicated, the spread of GA to this area is interesting. Chen et al. [123] propose an approach that
can generate a smooth tool path that passes through the discrete cutter locations given in the original linear segments
analytically and discuss the impact on accuracy. Another approach to volumetric accuracy of a five-axis machine tool can
be found in Navrátilová et al. [124].

Apart from controlling algorithms, hardware and computational aspects are also treated. Thus, Uzunović et al. [125]
present a combination of two methods that can be effectively combined for control of electrical machines. For com-
putational acceleration, Vitabile et al. [126] propose a novel embedded coprocessor for accelerating CGA operations
in robotic tasks. Furthermore, Ramírez et al. [127] present a general method, based on GA, for the synthesis of slid-
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12 HITZER ET AL.

ing mode controllers in SISO switched nonlinear systems, and the same authors in an earlier study [128] examine the
sliding mode existence conditions, the switching policy, the invariance conditions, the associated equivalent control, and
the characterization of ideal sliding dynamics of sliding mode controllers from a GA viewpoint.

Derevianko and Vašík [129] exploit GAC ability to represent transformed objects such as rotated ellipses to propose
a novel algorithm for finding the optimal control of a switched dynamical systems with purely imaginary eigenvalues.
Such a geometric approach guarantees the optimality of the switching path and eliminates the need for any solver, thus
yielding results with minimal numerical errors. See also [130].

14 CONCLUSION

We hope to provide with our survey a comprehensive insight for the reader on new applications of Clifford's geomet-
ric algebras published during the last 12 months, prior to writing it (mid-January 2023). The use of the search engine
Dimensions.ai ensures a relatively complete overview of the relevant literature, where apart from scientific journal arti-
cles, preprints, book chapters (proceedings) and books are also included. Based on this survey, one can expect that GA will
continue to be heavily used in physics and find more and more applications in engineering (namely electric engineering),
in neural networks and artificial intelligence, and in image and signal processing.
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