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Abstract. In this work, we propose two algorithms that can be applied
in the context of a networked virtual environment to efficiently handle
the interpolation of displacement data for hand-based VR HMDs. Our
algorithms, based on the use of dual-quaternions and multivectors respec-
tively, impact the network consumption rate and are highly effective in
scenarios involving multiple users. We illustrate convincing results in a
modern game engine and a medical VR collaborative training scenario.
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1 Introduction

Collaborative, shared virtual environments (CVEs) are among the most
researched and developed areas of the last decades [1,13,16,18]. The growing
need of remote networked communication, further accelerated by the ongoing
pandemic, have resulted in great leaps in technological advancements. Head-
mounted displays (HMDs) are now capable of supporting intensive resource-
demanding Virtual Reality (VR) applications. To further facilitate this sup-
port, powerful algorithms are being developed and optimized by VR specialists
(Fig.1).

Part of this research revolves around the efficient relay of synchronized, net-
worked information from the HMD to the VR engine that is responsible for the
rendering of the scene [19]. This information typically involves user interactions
through the HMD controllers such as displacement data (e.g., translation and
rotation of the controller) within specific time intervals and button-press events.

Specifically, when the user moves the hand-based controllers of his HMD,
the hardware initially detects the movement type and logs it, in various time
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Fig. 1. Catching a tool in a VR collaborative scenario. (a) A user throws a tool (in our
case a medical drill) at another. (b) The object’s keyframes, sent by the user that threw
it, are interpolated using multivector LERP (see Sect. 4.2) on the receiver’s VR engine.
(c¢) The receiver manages to catch the tool, as a result of the effective frame generation
that is visualized in his/her HMD. This example is just to illustrate extreme hand-
based interpolation in collaborative, networked virtual environments and is provided
for illustration only. To better understand the significance of this figure, please watch
the paper’s presentation found in [9]. DO NOT TRY THIS AT HOME.

intervals based on the user’s or developer’s preferences. This logged movement,
that is either a translation and/or a rotation, is constantly transcoded into a
suitable format and relayed to the VR application and rendered as a corre-
sponding action, e.g., hand movement, object transformation or some action.
The controller’s data format to be transmitted to the rendering engine affects
the overall performance and quality of experience (QoE) and poses challenges
that must be addressed. These challenges involve keeping the latency between
the movement of the controller and its respective visualization in the HMD below
a certain threshold that will not break the user’s immersiveness. Furthermore,
the information must be relayed efficiently such that a continuous movement of
the controller results in a smooth jitter-less outcome in the VR environment.
Such challenges heavily depend on the implementation details regarding the
communication channel that handles the way that position and rotation of the
controller is relayed, as well as the choice of a suitable interpolation technique.
The displacement data are transmitted at discrete time intervals, approximately
20-40 times per second. To maintain a high frame-per-second scenery in the
VR, multiple in-between frames must be created on-the-fly by the appropriate
tweening algorithm. An efficient algorithm will allow the generation of natural
flow frames while requiring fewer intermediate keyframes. Such algorithms will
help reduce a) bandwidth usage between the HMD and the rendering engine and
b) CPU-strain, resulting in lower energy consumption as well as lower latency
issues in bandwidth-restricted networks. Moreover, HMDs with controllers of
limited frequency will still be able to deliver the same results as more expensive
HMDs.

The current state-of-the-art methods regarding the format used to transmit
the displacement data mainly involves the use of 3D vectors for translation and
quaternions for rotation data. These representation forms are dominant due to
the fact that they involve very few bytes to be represented (3 and 4 respectively)
and the fact that they support fast and efficient interpolations. Specifically, 3D
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vectors are usually linearly interpolated where as the SLERP method is usually
used for quaternion blending. In some engines, such as Unity3D, rotations are
sometimes provided in terms of Euler angles, but for interpolation needs, they
are internally transformed to their quaternion equivalents.

Our Contribution. In this work, we propose the use of geometric algebra (GA)
as a means to encapsulate the positional and rotational data of the hand-based
VR HMD controllers and to generate the intermediate frames in the rendering
engine. Our idea aims to take advantage of the fact that basic geometric entities
used in VR, such as points, planes, lines, translations, rotations and dilations
(uniform scalings), can be uniformly represented as multivectors, i.e., elements
of a suitable geometric algebra such as 3D Projective (3D PGA) or 3D Confor-
mal Geometric Algebra (3D CGA). Algebras such as 3D PGA and 3D CGA are
showing rapid adaptation to VR implementations due to their ability to rep-
resent the commonly used vectors, quaternions and dual-quaternions natively
as multivectors. In fact, quaternions and dual-quaternions are contained as a
sub-algebra in both these algebras [7]. Therefore, they incorporate all benefits of
quaternions and dual-quaternions representation such as artifact minimization in
interpolated frames [11]. Furthermore, geometric algebras enable powerful geo-
metric predicates and modules within an all-in-one framework [10], providing, if
used with caution, performance which is on par with the current state-of-the-art
frameworks [14]. We illustrate convincing results in a modern game engine and
a medical VR collaborative training scenario (see the video presentation of this
work [9] and Fig. 2).

Fig. 2. Images taken from a modern VR training application that incorporates our
proposed interpolation methods for all rigid object transformations as well as hand
and avatar movements. It is recommended to see the video presentation of this work
[9], to better understand the significance of these figures.

2 State of the Art

The current state-of-the-art for representing the controller’s displacement are 3D
vectors for the positional data and quaternions for the rotational data. Regarding
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the position, the controllers log their current position v = (v, vy, v,) at each time
step with respect to a point they consider as the origin. Their rotation is stored
as a unit quaternion ¢ = (¢x, ¢y, ¢z, Gw) = qot + qyJ + ¢:k + qu, i.e., it holds that
2+ qz +¢% + ¢% = 1. The use of unit quaternions revolutionized graphics as it
provided a convenient, minimal way to represent rotations, while avoiding known
problems (e.g., gimbal lock) of other representation forms such as Euler angles
[11]. The ways to change between unit quaternions and other forms representing
the same rotation, such as rotation matrices and Euler angles, are summarized
in [2].

The interpolation of the 3D vectors containing the positional data is done
linearly, i.e., given v and w vectors we may generate the intermediate vectors
(1 —a)v 4 aw, for as many a € [0,1] as needed. Given the unit quaternions ¢
and r the intermediate quaternions are evaluated using the SLERP blending,
i.e., we evaluate q(q~'r)?, for as many a € [0,1] as needed, like before. If these
intermediate quaternions are applied to a point p, the image of p, as a goes from
0 to 1, has a uniform angular velocity around a fixed rotation axis, which results
in a smooth rotation of objects and animated models.

3 Room for Improvements

The current state for representing and interpolating positional and rotational
data is based on the use of 3D vectors and quaternions as the main VR rendering
engines, Unity3D and Unreal Engine, have the respective frameworks already
built in. Graphics courses worldwide mention quaternions as the next evolution
step of Euler angles; a step that simplified things and amended interpolation
problems without adding too much overhead in the process. Despite it being
widespread, the combined use of vectors and quaternions does not come without
limitations.

A drawback that often arises lies in the fact that the simultaneous linear
interpolation of the vectors with the SLERP interpolation of the quaternions
applied to rigid objects does not always yield smooth, natural looking results
in VR. This is empirically observed on various objects, depending on the move-
ment the user ezpects to see when moving the controllers. Such artifacts usually
require the developer’s intervention to be amended, usually by demanding more
intermediate displacements from the controller to be sent, i.e., by introducing
more non-interpolated keyframes. This results mainly in the increase of band-
width required as more information must be sent back and forth between the
rendering engine and the input device, causing a hindrance in the networking
layer. Multiplayer VR applications, that heavily rely on the input of multiple
users on the same rendering engine for multiple objects, are influenced even
more, when such a need arises. Furthermore, the problem is intensified if the
rendering application resides on a cloud or edge node; such scenarios are becom-
ing increasingly more common as they are accelerated by the advancements of
5G networks and the relative functionalities they provide.
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4 Proposing New Approaches

4.1 Proposed Method Based on Dual Quaternions

In the past few years, graphics specialists have shown that dual quaternions can
be a viable alternative and improvement over quaternions, as they allow us to
unify the translation and rotation data into a single entity. Dual quaternions
are created by quaternions if dual numbers are used instead of real numbers
as coeflicients, i.e., they are of the form d := A + eB, where A and B are
ordinary quaternions and € is the dual unit, an element that commutes with
every element and satisfies €2 = 0 [12]. A subset of these entities, called unit
dual quaternions, are indeed isomorphic to the transformation of a rigid body.
A clear advantage of using dual quaternions is the fact that we only need one
framework to maintain and that applying the encapsulated information to a
single point requires a simple sandwich operator. Moreover, the rotation stored
in the unit dual quaternion A + ¢B can be easily extracted as the quaternion
r := A is the unit quaternion that amounts to the same rotation. Furthermore, if
B* denotes the conjugate quaternion of B, then t := 2AB* is a pure quaternion
whose coefficients form the translation vector [12].

Taking advantage of the above, we propose the replacement of the current
state-of-the-art sequence (see Fig.3, Top) with the following (see Fig.3, Mid-
dle). The displacement data of an object is again represented as a vector and
a quaternion; in this way, only a total of 7 float values (3 and 4 respectively)
need to be transmitted. The VR engine combines them in a dual quaternion
[12] and interpolates with the previous state of the object, also stored as a dual
quaternion. Depending on the engine’s and the user’s preferences, a number of
in-between frames are generated via SLERP interpolation [11] of the original and
final data. For each dual-quaternion received or generated, we decompose it to a
vector and a quaternion and apply them to the object. This step is necessary to
take advantage of the built-in optimized mechanisms and GPU implementations
of the VR engine.

A major advantage of the proposed method is that we can obtain similar
results with the state-of-the-art method by sending less keyframes per second.
As an empirical law, we may send 20 displacement data per second with our
method to obtain the same quality of generated frames as if we had sent 30
data per second with the current state-of-the-art method. This 33% reduction
of required data applies for each user of the VR application, greatly lowering
the bandwidth required as more users join. As an example, if n users partic-
ipate, the total displacement data required for our method would be 1120n
bytes per second (20 messages per second X 7 floats per message X 8 bytes per
float, assuming a classic implementation) as opposed to 1680n bytes per second
(20 messages per second X 7 floats per message X 8 bytes per float) with the
default method. The numbers of updates per second mentioned above relate to
the case of unrestricted-bandwidth network; for the respective results regarding
constrained networks Sect. 5 and Table 1. The performance boost of our method
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Displacement Data State-of-the-art Interpolation Engine

Vector LERP

Quaternion SLERP
Displacement Data Dual-quaternion-based Interpolation Engine
Vector Vector
Dual
S
Quaternion Quaternion
Displacement Data Multivector-based Interpolation Engine
Vector Vector
'— Multivector LERP {
Quaternion Quaternion

Fig. 3. Algorithm layout of the different interpolation engines used to generate inter-
mediate frames.

is further validated as it is used in the MAGES SDK [17] for cooperative VR
medical operations.

The drawbacks of this method is the need to constantly transform dual-
quaternions to vector and rotation data after every interpolation step but this
performance overhead is tolerable as the extraction of the displacement data
is accomplished in a straight-forward way. Also, performing SLERP on a dual
quaternion (proposed method) instead of a quaternion (state-of-the-art method)
demands more operations per step. The trade-offs between the two methods seem
to favor our method, especially in the case of collaborative VR applications.

4.2 Proposed Method Based on Multivectors

The proposed method described in Sect. 4.1 was based on the use of dual quater-
nions and the fact that interpolating them (using SLERP) produced smooth
intermediate frames. In this section, we go one step further and suggest the use
of multivectors instead of dual-quaternions (see Fig. 3, Bottom). This transition
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can be done in a straight-forward way if we use multivectors of 3D Conformal
(see [7]) or 3D Projective Algebra (see [4] and its updated Chap. 11 in [3]). The
interpolation of the resulting multivectors can be accomplished via LERP [6];
if M7 and M correspond to two consecutive displacement data, then we can
generate the in-between multivectors (1 — a)M; + aMs, for as many a € [0,1] as
needed (and normalize them if needed). Notice that since we are only applying
these displacements to rigid bodies, we may use LERP instead of SLERP (see
Fig.4). For every (normalized) multivector M received or interpolated, we may
now extract the translation vector and rotation quaternion. Every multivector
received or generated has to be decomposed to a vector and a quaternion in
order to be applied to the object, as modern VR Engines natively support only
the latter two formats. Assume that M = T« R where T' and R are the multivec-
tors encapsulating the translation and rotation, we may extract them depending
on the Geometric Algebra used (all products below are geometric unless stated
otherwise):

- 3D PGA: Given M, we evaluate egM. Since in this algebra T = 1 —
0.5eq(t1e1+taea+tses), represents the translation by (¢1,t2,t3) and egeg = 0,
it holds that egM = egT R = egR. Therefore, if egQQ = egR = aeg + begio +
cep13 + degas, we obtain the multivector R = a + beys + cey3 + desz which
corresponds to the quaternion ¢ = a — di 4+ ¢j — bk. We can now evaluate T'
as it equals MR™1 = M(a — bejs — ce13 — deas) = 1+ wegy + yeoe + zeoz and
extract the translation vector (—2z, —2y, —2z).

— 3D CGA: Given M, we obtain R by adding the terms of M that contain
only the basis vectors {1,e1,ea, €3, €12, €23, e13}. This derives from the fact
that T = 1 — 0.5 x (t1e1 + t2e2 + t3es)(eq + €5) (which corresponds to the
translation by (t1,%2,t3)) and therefore TR = R + m where m necessarily
contains basis elements containing e, and es (or their geometric product)
that cannot be canceled out. After the obtaining of R, we simply evaluate
T = MR™!, normalize it and extract the translation vector (ti,t,t3) from
the quantity t = T - (e5 — e4) = t1e1 + toeg + tzes. The conversion of R to
quaternions and the evaluation of R~! is identical with the case of 3D PGA
above.

The advantage of such a method lies on the fact that we can use LERP
blending of multivectors instead of SLERP. This saves as a lot of time and CPU-
strain; SLERP interpolation requires the evaluation of a multivector’s logarithm,
which requires a lot of complex operations [5]. Notice that, LERP is efficient in
our case since only rigid objects displacements are transfered via the network;
if we wanted to animate skinned models via multivectors it is known that only
SLERP can produce jitter-less intermediate frames [11]. Another gain of this
proposed method is the ability to incorporate it in an all-in-one GA framework,
that will use only multivectors to represent model, deformation and animation
data. Such a framework is able to deliver efficient results and embeds powerful
modules [10,14,15]. In such frameworks, decomposition of multivectors to vectors
and quaternions will be redundant, as we can apply the displacement to the
object’s multivector form via a simple sandwich operation.
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Fig.4. A triangular object is interpolated via multivectors. A motor including both
a translation and a rotation is applied to the triangle via its mass center. Between
the extreme positions of the object, we generate 20 intermediate frames using LERP
(yellow) and SLERP (green) interpolation of the multivector. Only minimal differences
are spotted between the two outcomes. (Color figure online)

The trade-offs of such an implementation are based on the fact that modern
VR engines do not natively support multivectors and therefore production-ready
modules, with basic functions implemented, are almost non-existent. An excep-
tion is the Klein C++ module for 3D PGA, found in www.jeremyong.com/klein;
for 3D CGA no such module is available the moment this paper is written. This
makes it difficult for GA non-experts to adopt and implement such methods.
Furthermore, multivectors require 16 (3D PGA) or 32 (3D CGA) float values
to be represented and therefore even a simple addition between two amounts to
16 or 32 float operations respectively. Unoptimized modules, usually running in
CPU and not in GPU, may result in slow rendering. On the contrary, optimized
ones, such as GAALOP [8], can take advantage of the fact that very few of the
multivector coordinates are indeed non-zero, as the multivectors involved are
always motors, i.e., represent translations and/or rotations, and therefore have
specific form.

5 Our Results

The methods proposed were implemented in Unity3D and applied to a VR col-
laborative training scenario. The video accompanying this work demonstrates
the effectiveness of our methods compared with the current state of the art.
Specifically, we compare the three methods under different input rates per sec-
ond, i.e., the keyframes sent per second to the VR rendering engine. The input
rates tested are 5, 10, 15 and 20 frames per second (fps), where the last option is
an optimal value to avoid CPU/GPU strain in collaborative VR scenarios. These
rates are indicative values of the maximum possible fps that would be sent in a
network whose bandwidth rates from very-limited (5 fps) to unrestricted (more
than 20 fps). In lower fps, our methods yield jitter-less interpolated frames com-
pared to the state-of-the-art method, which would require 30fps to replicate
similar output. As mentioned before, this reduction of required data that must
be transfered per second by 33%—58% (depending on the network quality, see
Table 1) is multiplied by every active user, increasing the impact and the effec-
tiveness of our methods in bandwidth-restricted environments.
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Table 1. Summary of the metrics of our methods (Ours) versus the state-of-the-
art methods (SoA). The first column describes the possible network quality which
correlates to the maximum number of updates per second that can be performed. The
second column contains the update rate required to obtain the same QoE under the
specific network quality limitations. The third column contains the comparison of the
bandwidth and the running time difference by our algorithms compared with the SoA
algorithm, when using the respective update rates of the second column.

Network quality | How to achieve best QoE | Metrics on our methods
Excellent SoA: 30 updates/sec 33% less bandwidth
Ours: 20 updates/sec 16.5% lower running time
Good SoA: 20 updates/sec 50% less bandwidth
Ours: 10 updates/sec 16.5% lower running time
Mediocre SoA: 15 updates/sec 53% less bandwidth
Ours: 7 updates/sec 16.5% lower running time
Poor SoA: 12 updates/sec 58% less bandwidth
Ours: 5 updates/sec 16.5% lower running time

The workflows of the two algorithms, compared with the current state of the
art, are summarized in Fig. 3. In Fig. 5 we demonstrate the interpolation of the
same object, at specific time intervals, for all methods; the intermediate frames
feel natural for both methods proposed.

In Table 1, it is demonstrated that, under various network restrictions, both
proposed methods required less data (in terms of updates per sec) to be trans-
mitted via the network to achieve the same QoE. This decrease in data transfer
leads to a lower energy consumption of the HMDs by 10% (on average, prelimi-
nary result) and therefore enhances the overall mobility of the devices relying on
batteries. Our methods provide a performance boost, decrease the required time
to perform the same operation, with fewer keyframes but the same number of
total generated frames, by 16.5% (on average). The running times were produced
in a PC with a 3,1 GHz 16-Core Intel Core i9 processor, with 32 GBs of DDR4
memory. The same percentage of performance boost is expected in less powerful
CPUs; in this case, the overall impact, in terms of absolute running time, will
be even more significant.
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Fig. 5. Different interpolation algorithms yield different, yet jitter-less, intermediate
frames. (Top): State of the art: Vector and quaternion separate interpolation. (Middle):
Dual-quaternion based interpolation algorithm. (Bottom): Multivector based interpo-
lation algorithm.

6 Conclusions and Future Work

In this work, we proposed two alternative interpolation algorithms based on dual-
quaternions and multivectors respectively. These algorithms can be applied in the
context of a networked virtual environment to efficiently handle the interpolation
of displacement data for hand-based VR HMDs. The amount of displacement data
per second that should be transmitted over the network to support a good QoE
can be reduced using our methods instead of the state-of-the-art. This results in
a performance boost and also lowers device energy consumption. The significance
of our proposed methods are further highlighted in bandwidth-restricted networks
and when multiple users are involved. Our results are illustrated in a modern game
engine and a medical VR collaborative training scenario.

The proposed algorithms and results can be further improved by using
optimized C# Geometric Algebra bindings (such as the ones provided in
bivector.net). This would allow for efficient SLERP for the multivector inter-
polation engine and therefore unlock the potential to apply motors for rigged
model animation in VR, as in [15]. It is our intention to integrate the algorithms
proposed to an all-in-one GA framework that also enables features such as cut,
tear and drill, as in [10].
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