)

Check for
updates

Never ‘Drop the Ball’ in the Operating
Room: An Efficient Hand-Based VR
HMD Controller Interpolation Algorithm,
for Collaborative, Networked Virtual
Environments

Manos Kamarianakis!2(®) @, Nick Lydatakis'2®,
and George Papagiannakis!-?

! University of Crete, Heraklion, Greece
2 ORamaVR, Heraklion, Greece
{manos,nick,george.papagiannakis}@oramavr.com
http://www.oramavr. com

Abstract. In this work, we propose two algorithms that can be applied
in the context of a networked virtual environment to efficiently handle
the interpolation of displacement data for hand-based VR HMDs. Our
algorithms, based on the use of dual-quaternions and multivectors respec-
tively, impact the network consumption rate and are highly effective in
scenarios involving multiple users. We illustrate convincing results in a
modern game engine and a medical VR collaborative training scenario.

Keywords: Interpolation + Keyframe generation - Geometric algebra

1 Introduction

Collaborative, shared virtual environments (CVEs) are among the most
researched and developed areas of the last decades [1,13,16,18]. The growing
need of remote networked communication, further accelerated by the ongoing
pandemic, have resulted in great leaps in technological advancements. Head-
mounted displays (HMDs) are now capable of supporting intensive resource-
demanding Virtual Reality (VR) applications. To further facilitate this sup-
port, powerful algorithms are being developed and optimized by VR specialists
(Fig.1).

Part of this research revolves around the efficient relay of synchronized, net-
worked information from the HMD to the VR engine that is responsible for the
rendering of the scene [19]. This information typically involves user interactions
through the HMD controllers such as displacement data (e.g., translation and
rotation of the controller) within specific time intervals and button-press events.

Specifically, when the user moves the hand-based controllers of his HMD,
the hardware initially detects the movement type and logs it, in various time
© Springer Nature Switzerland AG 2021

N. Magnenat-Thalmann et al. (Eds.): CGI 2021, LNCS 13002, pp. 694-704, 2021.
https://doi.org/10.1007/978-3-030-89029-2_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89029-2_52&domain=pdf
http://orcid.org/0000-0001-6577-0354
http://orcid.org/0000-0001-8159-9956
http://orcid.org/0000-0002-2977-9850
https://doi.org/10.1007/978-3-030-89029-2_52

Never ‘Drop the Ball’ in the Operating Room 695

Fig. 1. Catching a tool in a VR collaborative scenario. (a) A user throws a tool (in our
case a medical drill) at another. (b) The object’s keyframes, sent by the user that threw
it, are interpolated using multivector LERP (see Sect. 4.2) on the receiver’s VR engine.
(c¢) The receiver manages to catch the tool, as a result of the effective frame generation
that is visualized in his/her HMD. This example is just to illustrate extreme hand-
based interpolation in collaborative, networked virtual environments and is provided
for illustration only. To better understand the significance of this figure, please watch
the paper’s presentation found in [9]. DO NOT TRY THIS AT HOME.

intervals based on the user’s or developer’s preferences. This logged movement,
that is either a translation and/or a rotation, is constantly transcoded into a
suitable format and relayed to the VR application and rendered as a corre-
sponding action, e.g., hand movement, object transformation or some action.
The controller’s data format to be transmitted to the rendering engine affects
the overall performance and quality of experience (QoE) and poses challenges
that must be addressed. These challenges involve keeping the latency between
the movement of the controller and its respective visualization in the HMD below
a certain threshold that will not break the user’s immersiveness. Furthermore,
the information must be relayed efficiently such that a continuous movement of
the controller results in a smooth jitter-less outcome in the VR environment.
Such challenges heavily depend on the implementation details regarding the
communication channel that handles the way that position and rotation of the
controller is relayed, as well as the choice of a suitable interpolation technique.
The displacement data are transmitted at discrete time intervals, approximately
20-40 times per second. To maintain a high frame-per-second scenery in the
VR, multiple in-between frames must be created on-the-fly by the appropriate
tweening algorithm. An efficient algorithm will allow the generation of natural
flow frames while requiring fewer intermediate keyframes. Such algorithms will
help reduce a) bandwidth usage between the HMD and the rendering engine and
b) CPU-strain, resulting in lower energy consumption as well as lower latency
issues in bandwidth-restricted networks. Moreover, HMDs with controllers of
limited frequency will still be able to deliver the same results as more expensive
HMDs.

The current state-of-the-art methods regarding the format used to transmit
the displacement data mainly involves the use of 3D vectors for translation and
quaternions for rotation data. These representation forms are dominant due to
the fact that they involve very few bytes to be represented (3 and 4 respectively)
and the fact that they support fast and efficient interpolations. Specifically, 3D

696 M. Kamarianakis et al.

vectors are usually linearly interpolated where as the SLERP method is usually
used for quaternion blending. In some engines, such as Unity3D, rotations are
sometimes provided in terms of Euler angles, but for interpolation needs, they
are internally transformed to their quaternion equivalents.

Our Contribution. In this work, we propose the use of geometric algebra (GA)
as a means to encapsulate the positional and rotational data of the hand-based
VR HMD controllers and to generate the intermediate frames in the rendering
engine. Our idea aims to take advantage of the fact that basic geometric entities
used in VR, such as points, planes, lines, translations, rotations and dilations
(uniform scalings), can be uniformly represented as multivectors, i.e., elements
of a suitable geometric algebra such as 3D Projective (3D PGA) or 3D Confor-
mal Geometric Algebra (3D CGA). Algebras such as 3D PGA and 3D CGA are
showing rapid adaptation to VR implementations due to their ability to rep-
resent the commonly used vectors, quaternions and dual-quaternions natively
as multivectors. In fact, quaternions and dual-quaternions are contained as a
sub-algebra in both these algebras [7]. Therefore, they incorporate all benefits of
quaternions and dual-quaternions representation such as artifact minimization in
interpolated frames [11]. Furthermore, geometric algebras enable powerful geo-
metric predicates and modules within an all-in-one framework [10], providing, if
used with caution, performance which is on par with the current state-of-the-art
frameworks [14]. We illustrate convincing results in a modern game engine and
a medical VR collaborative training scenario (see the video presentation of this
work [9] and Fig. 2).

Fig. 2. Images taken from a modern VR training application that incorporates our
proposed interpolation methods for all rigid object transformations as well as hand
and avatar movements. It is recommended to see the video presentation of this work
[9], to better understand the significance of these figures.

2 State of the Art

The current state-of-the-art for representing the controller’s displacement are 3D
vectors for the positional data and quaternions for the rotational data. Regarding

Never ‘Drop the Ball’ in the Operating Room 697

the position, the controllers log their current position v = (v, vy, v,) at each time
step with respect to a point they consider as the origin. Their rotation is stored
as a unit quaternion ¢ = (¢x, ¢y, ¢z, Gw) = qot + qyJ + ¢:k + qu, i.e., it holds that
2+ qz +¢% + ¢% = 1. The use of unit quaternions revolutionized graphics as it
provided a convenient, minimal way to represent rotations, while avoiding known
problems (e.g., gimbal lock) of other representation forms such as Euler angles
[11]. The ways to change between unit quaternions and other forms representing
the same rotation, such as rotation matrices and Euler angles, are summarized
in [2].

The interpolation of the 3D vectors containing the positional data is done
linearly, i.e., given v and w vectors we may generate the intermediate vectors
(1 —a)v 4 aw, for as many a € [0,1] as needed. Given the unit quaternions ¢
and r the intermediate quaternions are evaluated using the SLERP blending,
i.e., we evaluate q(q~'r)?, for as many a € [0,1] as needed, like before. If these
intermediate quaternions are applied to a point p, the image of p, as a goes from
0 to 1, has a uniform angular velocity around a fixed rotation axis, which results
in a smooth rotation of objects and animated models.

3 Room for Improvements

The current state for representing and interpolating positional and rotational
data is based on the use of 3D vectors and quaternions as the main VR rendering
engines, Unity3D and Unreal Engine, have the respective frameworks already
built in. Graphics courses worldwide mention quaternions as the next evolution
step of Euler angles; a step that simplified things and amended interpolation
problems without adding too much overhead in the process. Despite it being
widespread, the combined use of vectors and quaternions does not come without
limitations.

A drawback that often arises lies in the fact that the simultaneous linear
interpolation of the vectors with the SLERP interpolation of the quaternions
applied to rigid objects does not always yield smooth, natural looking results
in VR. This is empirically observed on various objects, depending on the move-
ment the user ezpects to see when moving the controllers. Such artifacts usually
require the developer’s intervention to be amended, usually by demanding more
intermediate displacements from the controller to be sent, i.e., by introducing
more non-interpolated keyframes. This results mainly in the increase of band-
width required as more information must be sent back and forth between the
rendering engine and the input device, causing a hindrance in the networking
layer. Multiplayer VR applications, that heavily rely on the input of multiple
users on the same rendering engine for multiple objects, are influenced even
more, when such a need arises. Furthermore, the problem is intensified if the
rendering application resides on a cloud or edge node; such scenarios are becom-
ing increasingly more common as they are accelerated by the advancements of
5G networks and the relative functionalities they provide.

698 M. Kamarianakis et al.

4 Proposing New Approaches

4.1 Proposed Method Based on Dual Quaternions

In the past few years, graphics specialists have shown that dual quaternions can
be a viable alternative and improvement over quaternions, as they allow us to
unify the translation and rotation data into a single entity. Dual quaternions
are created by quaternions if dual numbers are used instead of real numbers
as coeflicients, i.e., they are of the form d := A + eB, where A and B are
ordinary quaternions and € is the dual unit, an element that commutes with
every element and satisfies €2 = 0 [12]. A subset of these entities, called unit
dual quaternions, are indeed isomorphic to the transformation of a rigid body.
A clear advantage of using dual quaternions is the fact that we only need one
framework to maintain and that applying the encapsulated information to a
single point requires a simple sandwich operator. Moreover, the rotation stored
in the unit dual quaternion A + ¢B can be easily extracted as the quaternion
r := A is the unit quaternion that amounts to the same rotation. Furthermore, if
B* denotes the conjugate quaternion of B, then t := 2AB* is a pure quaternion
whose coefficients form the translation vector [12].

Taking advantage of the above, we propose the replacement of the current
state-of-the-art sequence (see Fig.3, Top) with the following (see Fig.3, Mid-
dle). The displacement data of an object is again represented as a vector and
a quaternion; in this way, only a total of 7 float values (3 and 4 respectively)
need to be transmitted. The VR engine combines them in a dual quaternion
[12] and interpolates with the previous state of the object, also stored as a dual
quaternion. Depending on the engine’s and the user’s preferences, a number of
in-between frames are generated via SLERP interpolation [11] of the original and
final data. For each dual-quaternion received or generated, we decompose it to a
vector and a quaternion and apply them to the object. This step is necessary to
take advantage of the built-in optimized mechanisms and GPU implementations
of the VR engine.

A major advantage of the proposed method is that we can obtain similar
results with the state-of-the-art method by sending less keyframes per second.
As an empirical law, we may send 20 displacement data per second with our
method to obtain the same quality of generated frames as if we had sent 30
data per second with the current state-of-the-art method. This 33% reduction
of required data applies for each user of the VR application, greatly lowering
the bandwidth required as more users join. As an example, if n users partic-
ipate, the total displacement data required for our method would be 1120n
bytes per second (20 messages per second X 7 floats per message X 8 bytes per
float, assuming a classic implementation) as opposed to 1680n bytes per second
(20 messages per second X 7 floats per message X 8 bytes per float) with the
default method. The numbers of updates per second mentioned above relate to
the case of unrestricted-bandwidth network; for the respective results regarding
constrained networks Sect. 5 and Table 1. The performance boost of our method

Never ‘Drop the Ball’ in the Operating Room 699

Displacement Data State-of-the-art Interpolation Engine

Vector LERP

Quaternion SLERP
Displacement Data Dual-quaternion-based Interpolation Engine
Vector Vector
Dual
S
Quaternion Quaternion
Displacement Data Multivector-based Interpolation Engine
Vector Vector
'— Multivector LERP {
Quaternion Quaternion

Fig. 3. Algorithm layout of the different interpolation engines used to generate inter-
mediate frames.

is further validated as it is used in the MAGES SDK [17] for cooperative VR
medical operations.

The drawbacks of this method is the need to constantly transform dual-
quaternions to vector and rotation data after every interpolation step but this
performance overhead is tolerable as the extraction of the displacement data
is accomplished in a straight-forward way. Also, performing SLERP on a dual
quaternion (proposed method) instead of a quaternion (state-of-the-art method)
demands more operations per step. The trade-offs between the two methods seem
to favor our method, especially in the case of collaborative VR applications.

4.2 Proposed Method Based on Multivectors

The proposed method described in Sect. 4.1 was based on the use of dual quater-
nions and the fact that interpolating them (using SLERP) produced smooth
intermediate frames. In this section, we go one step further and suggest the use
of multivectors instead of dual-quaternions (see Fig. 3, Bottom). This transition

700 M. Kamarianakis et al.

can be done in a straight-forward way if we use multivectors of 3D Conformal
(see [7]) or 3D Projective Algebra (see [4] and its updated Chap. 11 in [3]). The
interpolation of the resulting multivectors can be accomplished via LERP [6];
if M7 and M correspond to two consecutive displacement data, then we can
generate the in-between multivectors (1 — a)M; + aMs, for as many a € [0,1] as
needed (and normalize them if needed). Notice that since we are only applying
these displacements to rigid bodies, we may use LERP instead of SLERP (see
Fig.4). For every (normalized) multivector M received or interpolated, we may
now extract the translation vector and rotation quaternion. Every multivector
received or generated has to be decomposed to a vector and a quaternion in
order to be applied to the object, as modern VR Engines natively support only
the latter two formats. Assume that M = T« R where T' and R are the multivec-
tors encapsulating the translation and rotation, we may extract them depending
on the Geometric Algebra used (all products below are geometric unless stated
otherwise):

- 3D PGA: Given M, we evaluate egM. Since in this algebra T = 1 —
0.5eq(t1e1+taea+tses), represents the translation by (¢1,t2,t3) and egeg = 0,
it holds that egM = egT R = egR. Therefore, if egQQ = egR = aeg + begio +
cep13 + degas, we obtain the multivector R = a + beys + cey3 + desz which
corresponds to the quaternion ¢ = a — di 4+ ¢j — bk. We can now evaluate T'
as it equals MR™1 = M(a — bejs — ce13 — deas) = 1+ wegy + yeoe + zeoz and
extract the translation vector (—2z, —2y, —2z).

— 3D CGA: Given M, we obtain R by adding the terms of M that contain
only the basis vectors {1,e1,ea, €3, €12, €23, e13}. This derives from the fact
that T = 1 — 0.5 x (t1e1 + t2e2 + t3es)(eq + €5) (which corresponds to the
translation by (t1,%2,t3)) and therefore TR = R + m where m necessarily
contains basis elements containing e, and es (or their geometric product)
that cannot be canceled out. After the obtaining of R, we simply evaluate
T = MR™!, normalize it and extract the translation vector (ti,t,t3) from
the quantity t = T - (e5 — e4) = t1e1 + toeg + tzes. The conversion of R to
quaternions and the evaluation of R~! is identical with the case of 3D PGA
above.

The advantage of such a method lies on the fact that we can use LERP
blending of multivectors instead of SLERP. This saves as a lot of time and CPU-
strain; SLERP interpolation requires the evaluation of a multivector’s logarithm,
which requires a lot of complex operations [5]. Notice that, LERP is efficient in
our case since only rigid objects displacements are transfered via the network;
if we wanted to animate skinned models via multivectors it is known that only
SLERP can produce jitter-less intermediate frames [11]. Another gain of this
proposed method is the ability to incorporate it in an all-in-one GA framework,
that will use only multivectors to represent model, deformation and animation
data. Such a framework is able to deliver efficient results and embeds powerful
modules [10,14,15]. In such frameworks, decomposition of multivectors to vectors
and quaternions will be redundant, as we can apply the displacement to the
object’s multivector form via a simple sandwich operation.

Never ‘Drop the Ball’ in the Operating Room 701

Fig.4. A triangular object is interpolated via multivectors. A motor including both
a translation and a rotation is applied to the triangle via its mass center. Between
the extreme positions of the object, we generate 20 intermediate frames using LERP
(yellow) and SLERP (green) interpolation of the multivector. Only minimal differences
are spotted between the two outcomes. (Color figure online)

The trade-offs of such an implementation are based on the fact that modern
VR engines do not natively support multivectors and therefore production-ready
modules, with basic functions implemented, are almost non-existent. An excep-
tion is the Klein C++ module for 3D PGA, found in www.jeremyong.com/klein;
for 3D CGA no such module is available the moment this paper is written. This
makes it difficult for GA non-experts to adopt and implement such methods.
Furthermore, multivectors require 16 (3D PGA) or 32 (3D CGA) float values
to be represented and therefore even a simple addition between two amounts to
16 or 32 float operations respectively. Unoptimized modules, usually running in
CPU and not in GPU, may result in slow rendering. On the contrary, optimized
ones, such as GAALOP [8], can take advantage of the fact that very few of the
multivector coordinates are indeed non-zero, as the multivectors involved are
always motors, i.e., represent translations and/or rotations, and therefore have
specific form.

5 Our Results

The methods proposed were implemented in Unity3D and applied to a VR col-
laborative training scenario. The video accompanying this work demonstrates
the effectiveness of our methods compared with the current state of the art.
Specifically, we compare the three methods under different input rates per sec-
ond, i.e., the keyframes sent per second to the VR rendering engine. The input
rates tested are 5, 10, 15 and 20 frames per second (fps), where the last option is
an optimal value to avoid CPU/GPU strain in collaborative VR scenarios. These
rates are indicative values of the maximum possible fps that would be sent in a
network whose bandwidth rates from very-limited (5 fps) to unrestricted (more
than 20 fps). In lower fps, our methods yield jitter-less interpolated frames com-
pared to the state-of-the-art method, which would require 30fps to replicate
similar output. As mentioned before, this reduction of required data that must
be transfered per second by 33%—58% (depending on the network quality, see
Table 1) is multiplied by every active user, increasing the impact and the effec-
tiveness of our methods in bandwidth-restricted environments.

www.jeremyong.com/klein

702 M. Kamarianakis et al.

Table 1. Summary of the metrics of our methods (Ours) versus the state-of-the-
art methods (SoA). The first column describes the possible network quality which
correlates to the maximum number of updates per second that can be performed. The
second column contains the update rate required to obtain the same QoE under the
specific network quality limitations. The third column contains the comparison of the
bandwidth and the running time difference by our algorithms compared with the SoA
algorithm, when using the respective update rates of the second column.

Network quality | How to achieve best QoE | Metrics on our methods
Excellent SoA: 30 updates/sec 33% less bandwidth
Ours: 20 updates/sec 16.5% lower running time
Good SoA: 20 updates/sec 50% less bandwidth
Ours: 10 updates/sec 16.5% lower running time
Mediocre SoA: 15 updates/sec 53% less bandwidth
Ours: 7 updates/sec 16.5% lower running time
Poor SoA: 12 updates/sec 58% less bandwidth
Ours: 5 updates/sec 16.5% lower running time

The workflows of the two algorithms, compared with the current state of the
art, are summarized in Fig. 3. In Fig. 5 we demonstrate the interpolation of the
same object, at specific time intervals, for all methods; the intermediate frames
feel natural for both methods proposed.

In Table 1, it is demonstrated that, under various network restrictions, both
proposed methods required less data (in terms of updates per sec) to be trans-
mitted via the network to achieve the same QoE. This decrease in data transfer
leads to a lower energy consumption of the HMDs by 10% (on average, prelimi-
nary result) and therefore enhances the overall mobility of the devices relying on
batteries. Our methods provide a performance boost, decrease the required time
to perform the same operation, with fewer keyframes but the same number of
total generated frames, by 16.5% (on average). The running times were produced
in a PC with a 3,1 GHz 16-Core Intel Core i9 processor, with 32 GBs of DDR4
memory. The same percentage of performance boost is expected in less powerful
CPUs; in this case, the overall impact, in terms of absolute running time, will
be even more significant.

Never ‘Drop the Ball’ in the Operating Room 703

} ./ ~/ \/
adt K BB

Fig. 5. Different interpolation algorithms yield different, yet jitter-less, intermediate
frames. (Top): State of the art: Vector and quaternion separate interpolation. (Middle):
Dual-quaternion based interpolation algorithm. (Bottom): Multivector based interpo-
lation algorithm.

6 Conclusions and Future Work

In this work, we proposed two alternative interpolation algorithms based on dual-
quaternions and multivectors respectively. These algorithms can be applied in the
context of a networked virtual environment to efficiently handle the interpolation
of displacement data for hand-based VR HMDs. The amount of displacement data
per second that should be transmitted over the network to support a good QoE
can be reduced using our methods instead of the state-of-the-art. This results in
a performance boost and also lowers device energy consumption. The significance
of our proposed methods are further highlighted in bandwidth-restricted networks
and when multiple users are involved. Our results are illustrated in a modern game
engine and a medical VR collaborative training scenario.

The proposed algorithms and results can be further improved by using
optimized C# Geometric Algebra bindings (such as the ones provided in
bivector.net). This would allow for efficient SLERP for the multivector inter-
polation engine and therefore unlock the potential to apply motors for rigged
model animation in VR, as in [15]. It is our intention to integrate the algorithms
proposed to an all-in-one GA framework that also enables features such as cut,
tear and drill, as in [10].

Acknowledgments. This work was co-financed by European Regional Development
Fund of the European Union and Greek national funds through the Operational Pro-
gram Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH -
CREATE - INNOVATE (project codes: TIEDK-01149 and T1IEDK-01448). The project

http://www.bivector.net

704 M. Kamarianakis et al.

also received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871793.

References

1. Churchill, E.F., Snowdon, D.: Collaborative virtual environments: an introductory
review of issues and systems. Virtual Reality 3(1), 3—15 (1998)

2. Diebel, J.: Representing attitude: euler angles, unit quaternions, and rotation vec-
tors. Matrix 58(15-16), 1-35 (2006)

3. Dorst, L.: A guided tour to the plane-based geometric algebra pga. https://
bivector.net/PGA4CS.html

4. Dorst, L., Fontijne, D., Mann, S.: Geometric algebra for computer science - an
object-oriented approach to geometry. The Morgan Kaufmann series in computer
graphics (2007)

5. Dorst, L., Valkenburg, R.: Square root and logarithm of rotors in 3d conformal geo-
metric algebra using polar decomposition. In: Guide to Geometric Algebra in Prac-
tice, pp. 81-104. Springer, London (2011). https://doi.org/10.1007/978-0-85729-
811-9_5

6. Hadfield, H., Lasenby, J.: Direct linear interpolation of geometric objects in confor-
mal geometric algebra. Adv. Appl. Clifford Algebras 29(4), 1-25 (2019). https://
doi.org/10.1007/s00006-019-1003-y

7. Hildenbrand, D.: Foundations of geometric algebra computing. Springer (2013)

8. Hildenbrand, D., Pitt, J., Koch, A.: Gaalop-high performance parallel computing
based on conformal geometric algebra. In: Geometric Algebra Computing, pp. 477
494. Springer (2010)

9. Kamarianakis, M., Lydatakis, N., Papagiannakis, G.: Video presentation of the
paper ‘Never Drop the Ball’ (2021). https://youtu.be/xoXrRU-2gLQ

10. Kamarianakis, M., Papagiannakis, G.: An all-in-one geometric algorithm for cut-
ting, tearing, drilling deformable models. arXiv preprint arXiv:2102.07499 (2021)

11. Kavan, L., Collins, S., Zara, J., O’Sullivan, C.: Geometric skinning with approxi-
mate dual quaternion blending. ACM Trans. Graph. 27(4), 105 (2008)

12. Kenwright, B.: A beginners guide to dual-quaternions: What they are, how they
work, and how to use them for 3D character hierarchies. In: WSCG 2012 - Con-
ference Proceedings, pp. 1-10. Newcastle University, United Kingdom, December
2012

13. Molet, T., et al.: Anyone for tennis? Presence: Teleoperators Virtual Environ. 8(2),
140-156 (1999)

14. Papaefthymiou, M., Hildenbrand, D., Papagiannakis, G.: An inclusive Conformal
Geometric Algebra GPU animation interpolation and deformation algorithm. Vis.
Comput. 32(6-8), 751-759 (2016)

15. Papagiannakis, G.: Geometric algebra rotors for skinned character animation
blending. In: SIGGRAPH Asia 2013 Technical Briefs, SA 2013, December 2013

16. Papagiannakis, G., Singh, G., Magnenat-Thalmann, N.: A survey of mobile and
wireless technologies for augmented reality systems. Comput. Animation Virtual
Worlds 19(1), 3-22 (2008)

17. Papagiannakis, G., et al.: Mages 3.0: Tying the knot of medical vr. In: ACM SIG-
GRAPH 2020 Immersive Pavilion. Association for Computing Machinery (2020)

18. Ruan, J., Xie, D.: Networked vr: State of the art, solutions, and challenges. Elec-
tronics 10(2), 166 (2021)

19. Vilmi, O.: Real-time Multiplayer Software Architecture. Bachelor thesis, Metropo-
lia University of Applied Sciences, March 2020

https://bivector.net/PGA4CS.html
https://bivector.net/PGA4CS.html
https://doi.org/10.1007/978-0-85729-811-9_5
https://doi.org/10.1007/978-0-85729-811-9_5
https://doi.org/10.1007/s00006-019-1003-y
https://doi.org/10.1007/s00006-019-1003-y
https://youtu.be/xoXrRU-2gLQ
http://arxiv.org/abs/2102.07499

	 Preface
	 Organization
	 Contents
	Computer Animation
	Temporal Parameter-Free Deep Skinning of Animated Meshes
	1 Introduction
	2 Related Work
	3 Temporal Deep Skinning
	3.1 Training and Test Datasets
	3.2 Transformation and Weight Optimization
	3.3 Measuring the Error
	3.4 Building and Tuning a Neural Network for Weight Prediction

	4 Experimental Evaluation of Deep Skinning
	4.1 Quantitative Results
	4.2 Visual Quality Evaluation Results
	4.3 Discussion and Applications

	5 Conclusions
	A Appendix A
	B Appendix B
	C Appendix C
	References

	The Impact of Animations in the Perception of a Simulated Crowd
	1 Introduction
	2 Related Work
	2.1 Appearance and Motion of Virtual Humans
	2.2 Crowd Simulation

	3 Experiment Design
	3.1 Stimuli Creation
	3.2 Participants
	3.3 Hypothesis
	3.4 Statistical Analysis

	4 Results
	4.1 Realism of Simulated Crowds (H1)
	4.2 Realism of Trajectories (H2)
	4.3 Realism of Animation (H3)

	5 Discussion
	6 Conclusions and Future Work
	References

	Computer Vision
	Virtual Haptic System for Shape Recognition Based on Local Curvatures
	1 Introduction
	2 Related Work
	3 Data Capture
	3.1 Stimuli
	3.2 Data Collection

	4 Classifiers
	4.1 Probability Density Function Based
	4.2 Bayesian XGBoost

	5 Results
	5.1 Probability Density Function Based
	5.2 Bayesian XGBoost

	6 Discussion
	7 Conclusions and Future Work
	References

	Stable Depth Estimation Within Consecutive Video Frames
	1 Introduction
	2 Related Work
	3 Method
	3.1 Temporal Stability Loss
	3.2 Inconsistency Check and Self-discovered Mask
	3.3 De-scaled Geometry Consistency Loss
	3.4 Network Architecture

	4 Experiments
	4.1 Training Details
	4.2 Comparisons and Ablation Study

	5 Conclusions and Future Work
	References

	Progressive Multi-scale Reconstruction for Guided Depth Map Super-Resolution via Deep Residual Gate Fusion Network
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Overview
	3.2 Color Information Extraction Branch
	3.3 Depth Map Super-Resolution Branch
	3.4 Loss Function

	4 Experimental Results
	4.1 Implementation Details
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluation

	5 Conclusion
	References

	SE_EDNet: A Robust Manipulated Faces Detection Algorithm
	1 Introduction
	2 Detection Algorithms
	2.1 Framework
	2.2 Network Structure
	2.3 Image Residuals in YCrCb Color Space

	3 Experiment Analysis
	3.1 Setup
	3.2 Comparison Experiment
	3.3 Robustness Performance Analysis

	4 Conclusion
	References

	PointCNN-Based Individual Tree Detection Using LiDAR Point Clouds
	1 Introduction
	2 Method
	2.1 Overview
	2.2 Build CHM
	2.3 Generate Detection Sample
	2.4 Sample Classifier
	2.5 Tree Stagger Analysis

	3 Results
	3.1 Detection Result
	3.2 Comparison with Related Research

	4 Conclusion
	References

	Variance Weight Distribution Network Based Noise Sample Learning for Robust Person Re-identification
	1 Introduction
	2 Related Work
	2.1 Deep Person Re-ID Models
	2.2 Person Re-ID with Sample Noise
	2.3 Robust Deep Learning with Label Noise
	2.4 Feature Distribution Modelling

	3 Methodology
	3.1 Conventional Baseline Model
	3.2 Feature Uncertainty Distribution Learning
	3.3 Rectifying Label Learning
	3.4 Overall Classification Loss

	4 Experiments
	4.1 Datasets and Settings
	4.2 Implementation Details
	4.3 Comparison with the State-of-the-Arts

	5 Conclusion
	References

	Monocular Dense SLAM with Consistent Deep Depth Prediction
	1 Introduction
	2 Related Work
	2.1 Monocular Visual SLAM
	2.2 Dense Mapping
	2.3 SLAM with Deep Depth Prediction

	3 System Overview
	4 Local Mapping with Depth Refinement
	4.1 2D Image Analysis
	4.2 3D Outlier Detection

	5 Global Dense Mapping with Egomotion Constraints
	6 Evaluation
	6.1 Qualitative Results
	6.2 Quantitative Results

	7 Conclusion
	References

	3D Shape-Adapted Garment Generation with Sketches
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Overview of the Network Architecture
	3.2 Sketch Encoder and Body Shape Encoder
	3.3 Fully Convolutional Mesh Decoder
	3.4 Loss Function

	4 Experiments
	4.1 Dataset Construction
	4.2 Results

	5 Conclusion
	References

	Geometric Computing
	Light-Weight Multi-view Topology Consistent Facial Geometry and Reflectance Capture
	1 Introduction
	2 Related Work
	2.1 High-Quality Facial Geometry
	2.2 Facial Appearance Capture

	3 System Overview
	4 Proposed Method
	4.1 Landmarks Based Initialization
	4.2 Mesh Deformation
	4.3 Multi-view Based Diffuse-Specular Separation
	4.4 Surface Normal and BRDF Estimation
	4.5 Finer Geometry Optimization

	5 Results
	6 Conclusion
	References

	Real-Time Fluid Simulation with Atmospheric Pressure Using Weak Air Particles
	1 Introduction
	2 Related Work
	2.1 Particle-Based Fluid Simulation
	2.2 Fluid Simulation with Atmospheric Pressure

	3 Background
	4 Weak Air Particles
	5 Surface Force Model
	5.1 Density-Related Atmospheric Pressure Force
	5.2 Surface Tension Force

	6 Implementation
	7 Results
	8 Conclusion and Future Work
	References

	Human Poses and Gestures
	Reinforcement Learning for Quadruped Locomotion
	1 Introduction
	1.1 Objectives
	1.2 Analytic Reviews on Previous Work

	2 Methodology
	2.1 Modelling Quadruped Locomotion
	2.2 Reinforcement Learning

	3 Experiment and Comparative Evaluation
	4 Discussion and Conclusion
	References

	Partially Occluded Skeleton Action Recognition Based on Multi-stream Fusion Graph Convolutional Networks
	1 Introduction
	2 Related Work
	2.1 Manual Feature Extraction Method
	2.2 RNN/CNN-Based Method
	2.3 GCN-Based Method

	3 Proposed Method
	3.1 Multimodal Feature Extraction
	3.2 Spatial-Temporal Graph Convolutional Network
	3.3 Occlusion Sensitive Multi-stream Fusion Networks

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Experimental Results

	5 Conclusion
	References

	Social-Scene-Aware Generative Adversarial Networks for Pedestrian Trajectory Prediction
	1 Introduction
	2 Related Work
	2.1 Crowd Interaction
	2.2 Multimodal Trajectory Prediction

	3 Method
	3.1 The Formulation for Pedestrian Trajectory Prediction
	3.2 Scene Module
	3.3 Social Module
	3.4 Generative Adversarial Networks Module

	4 Experiments
	4.1 Evaluation Metrics and Baselines
	4.2 Quantitative Evaluations
	4.3 Qualitative Evaluations

	5 Conclusion
	References

	Image Processing
	Cecid Fly Defect Detection in Mangoes Using Object Detection Frameworks
	1 Introduction
	2 Towards Automatic Defect Detection in Agricultural Produce
	3 Methodology
	3.1 Image Acquisition
	3.2 Data Preparation
	3.3 Object Detection Frameworks

	4 Experimental Results
	5 Conclusion and Future Works
	References

	Twin-Channel Gan: Repair Shape with Twin-Channel Generative Adversarial Network and Structural Constraints*-6pt
	1 Introduction
	2 Related Work
	3 Method
	3.1 Geometry Information Completion
	3.2 Structure Information Optimization
	3.3 Fine-Tune

	4 Experiments and Evaluation
	4.1 Implementation Details
	4.2 Shape Repair
	4.3 Results and Discussion

	5 Limitation and Future Work
	6 Conclusion
	References

	CoPaint: Guiding Sketch Painting with Consistent Color and Coherent Generative Adversarial Networks
	1 Introduction
	2 Related Work
	2.1 Generative Adversarial Networks (GANs)
	2.2 Colorization

	3 Methods
	3.1 Overview
	3.2 Dataset
	3.3 Network Structure
	3.4 Loss Function

	4 Experiments
	4.1 Training Strategy
	4.2 Dataset Generation
	4.3 Analysis on Angles

	5 Evaluation
	5.1 Quality Analysis
	5.2 Color Consistency Analysis
	5.3 Ablation Studies

	6 Conclusions and Limitations
	References

	Multi-Stream Fusion Network for Multi-Distortion Image Super-Resolution
	1 Introduction
	2 Method
	2.1 Multi-Stream Fusion
	2.2 Fusion Module
	2.3 Deep Supervision

	3 Experimental Results
	3.1 Data Preprocessing and Network Training
	3.2 Model Analysis
	3.3 Results Analysis

	4 Conclusion
	References

	Generative Face Parsing Map Guided 3D Face Reconstruction Under Occluded Scenes
	1 Introduction
	2 Related Works
	2.1 Generic Face Reconstruction
	2.2 Face Image Synthesis

	3 Our Approach
	3.1 Landmark Prediction Task
	3.2 Face Parsing Map Generation
	3.3 Face Image Synthesis with GAN
	3.4 Camera and Illumination Model
	3.5 Loss Function of 3D Reconstruction

	4 Implementation Details
	5 Experimental Results
	5.1 Qualitative Comparisons with Recent Works
	5.2 Quantitative Comparison

	6 Conclusions
	References

	Compact Double Attention Module Embedded CNN for Palmprint Recognition
	1 Introduction
	2 Related Work
	2.1 CNN-Based Palmprint Recognition Methods
	2.2 Attention Mechanism

	3 The Proposed Method
	3.1 The Framework of CDAM-Net
	3.2 Double Attention Module (DAM)

	4 Experiments
	4.1 Databases
	4.2 Palmprint Identification Results
	4.3 Effectiveness of the DAM
	4.4 Parameter Analysis

	5 Conclusion
	References

	M2M: Learning to Enhance Low-Light Image from Model to Mobile FPGA
	1 Introduction
	2 Approach
	2.1 Quantization
	2.2 Hardware Optimizations

	3 Experimental Results
	3.1 Visual Comparisons
	3.2 Comparison with Other Platforms

	4 Conclusion
	References

	Character Flow Detection and Rectification for Scene Text Spotting
	1 Introduction
	2 Proposed Method
	2.1 Text Segmentation
	2.2 Text Rectification
	2.3 Text Recognition

	3 Experiments and Discussions
	3.1 Datasets and Implementation Details
	3.2 Text Detection and Rectification Results
	3.3 Comparison with the State of the Art

	4 Conclusions
	References

	A Deep Learning Method for 2D Image Stippling
	1 Introduction
	2 Related Work
	2.1 Image Stylization
	2.2 Stippling
	2.3 Deep Point Generation/Processing

	3 Our Method
	3.1 Network Architecture
	3.2 Loss Function
	3.3 Point Removal

	4 Experiment and Training
	4.1 Dataset
	4.2 Network Details
	4.3 Training
	4.4 Other Details

	5 Result
	5.1 Comparison with Previous Works
	5.2 Ablation Experiment
	5.3 Limitations

	6 Conclusion and Future Work
	References

	Medical Imaging
	In Silico Heart Versatile Graphical Interface with Systole and Diastole Phases Customizable for Diversified Arrhythmias Simulations
	1 Introduction
	2 Heart Simulation Review
	3 Methods
	4 Results
	5 Discussion
	6 Conclusion
	References

	ADD-Net:Attention U-Net with Dilated Skip Connection and Dense Connected Decoder for Retinal Vessel Segmentation
	1 Introduction
	2 Related Work
	2.1 Traditional Image Processing
	2.2 Deep Learning

	3 Method
	3.1 Network Structure
	3.2 Attention Module
	3.3 Dilated Skip Connection
	3.4 Dense Connected Decoder

	4 Experiment Results and Analysis
	5 Conclusion
	References

	BDFNet: Boundary-Assisted and Discriminative Feature Extraction Network for COVID-19 Lung Infection Segmentation
	1 Introduction
	2 Proposed Method
	2.1 Architecture of BDFNet
	2.2 Joint Loss Functions

	3 Experiments
	3.1 Implementation Details
	3.2 Ablation Study
	3.3 Comparisons with State-of-the-Art Methods

	4 Conclusion
	Appendix
	References

	A Classification Network for Ocular Diseases Based on Structure Feature and Visual Attention
	1 Introduction
	2 Material and Method
	2.1 Dataset
	2.2 Date Preprocessing
	2.3 Structure Feature Extraction
	2.4 Classification Network

	3 Results and Discussion
	4 Conclusion
	References

	Physics-Based Simulation
	DSNet: Dynamic Skin Deformation Prediction by Recurrent Neural Network
	1 Introduction
	2 Dynamic Skin Data and Representation
	2.1 SMPL Model
	2.2 Datasets
	2.3 Generation of Training Data

	3 DSNet
	3.1 Dimension Reduction by an Autoencoder
	3.2 Dynamic Skin Deformation Network

	4 Implementation Details
	5 Results
	6 Conclusion
	References

	Curvature Analysis of Sculpted Hair Meshes for Hair Guides Generation
	1 Introduction
	2 Previous Work
	3 Hair Mesh Curvature Analysis
	3.1 Curvature Analysis
	3.2 Generation of Guides
	3.3 Plausibility of Guides
	3.4 Direction Analysis
	3.5 Connection of Guides
	3.6 Repulsion of Guides
	3.7 Vector Field Generation from Guides
	3.8 Scalp Connection

	4 Results
	5 Conclusion
	References

	Synthesizing Human Faces Using Latent Space Factorization and Local Weights
	1 Introduction
	2 Related Work
	3 Locally Weighted Autoencoder
	3.1 Pre-Computed Local Weights from NMF
	3.2 Latent Space Manipulation

	4 Implementation
	5 Experimental Results
	5.1 Generation Results
	5.2 Discussion

	6 Conclusion
	References

	CFMNet: Coarse-to-Fine Cascaded Feature Mapping Network for Hair Attribute Transfer
	1 Introduction
	2 Related Work
	2.1 GAN-Based Attribute Manipulation
	2.2 3D Hair Reconstruction

	3 Method
	3.1 Overview
	3.2 Predefined Feature Extraction
	3.3 Coarse-to-Fine Cascaded Transfer

	4 Experiments
	4.1 Dataset and Pretraining
	4.2 Result Analysis
	4.3 Comparison
	4.4 Ablation Study

	5 Conclusions
	References

	Rendering and Textures
	Dynamic Shadow Synthesis Using Silhouette Edge Optimization
	1 Introduction
	2 Related Work
	3 Hash-Culling Approach
	4 Implementation
	5 Results and Discussion
	6 Conclusion
	References

	DDISH-GI: Dynamic Distributed Spherical Harmonics Global Illumination
	1 Introduction
	2 Related Work
	3 Distributing SH Light Probe Updating and Usage
	3.1 Path Tracing and SH Probe Update
	3.2 Rasterization and SH Probe Usage

	4 Distributed Computing
	5 Results
	5.1 Quality
	5.2 Performance

	6 Conclusion
	Appendix A GGX Approximation with ZH Lobes
	Appendix B Comparison Images
	References

	Simplicity Driven Edge Refinement and Color Reconstruction in Image Vectorization
	1 Introduction
	2 Related Work
	2.1 Curve-Based Design of Vector Graphics
	2.2 Vectorization with Triangulation
	2.3 Vectorization with Quadrangulation

	3 Algorithm
	3.1 Edge Extraction and Refinement
	3.2 Adaptive Mesh Generation
	3.3 Color Reconstruction

	4 Evaluation
	5 Applications
	6 Conclusions
	References

	Temporal-Consistency-Aware Video Color Transfer
	1 Introduction
	2 Our Method
	2.1 Keyframe Color Transfer
	2.2 Video Interframe Color Transfer
	2.3 Abnormal Color Correction
	2.4 Luminance Smoothing

	3 Experimental Results and Discussions
	4 Conclusion and Future Work
	References

	An Improved Advancing-front-Delaunay Method for Triangular Mesh Generation
	1 Introduction
	2 The Idea of Our Method
	3 Overall Method
	4 Node Generation
	5 Results and Discussion
	6 Conclusions and Future Research
	References

	Robotics and Vision
	Does Elderly Enjoy Playing Bingo with a Robot? A Case Study with the Humanoid Robot Nadine
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Adaptation
	3.2 Participants

	4 Data Collection and Analysis
	5 Results
	6 Conclusion
	7 Discussion and Future Work
	References

	Resilient Navigation Among Dynamic Agents with Hierarchical Reinforcement Learning
	1 Introduction
	2 Related Work
	2.1 Conventional Methods for Navigation
	2.2 Deep Reinforcement Learning Methods for Navigation
	2.3 Hierarchical Reinforcement Learning

	3 Approach
	3.1 Overview
	3.2 High-Level Module
	3.3 Low-Level Module

	4 Experiment
	4.1 Scene Design
	4.2 Perform Metrics
	4.3 Navigation Ability Comparison
	4.4 Resilience Comparison
	4.5 Ablation Experiment

	5 Conclusion
	References

	Visual Analytics
	MeshChain: Secure 3D Model and Intellectual Property management Powered by Blockchain Technology
	1 Introduction
	2 Related Work
	2.1 Decentralized Data Security
	2.2 Cooperative 3D Modeling
	2.3 Decentralized Version Control
	2.4 Decentralized Technologies in Computer Graphics

	3 Overview
	4 Cooperative Modeling
	4.1 Commit and Checkout
	4.2 Mesh Page

	5 Intellectual Property Management
	5.1 Mesh Incentive
	5.2 Data Authentication

	6 Results
	6.1 Decentralized Storage and Mesh Page

	7 Conclusion and Discussion
	References

	Image Emotion Analysis Based on the Distance Relation of Emotion Categories via Deep Metric Learning
	1 Introduction
	2 Related Works
	2.1 Image Emotion Analysis
	2.2 Deep Metric Learning

	3 Method
	3.1 Pre-processing
	3.2 Sampling Mechanism
	3.3 Double-Weighted Mechanism

	4 Experiment
	4.1 Performance Analysis
	4.2 Ablation
	4.3 Similarity Decline Rule

	5 Conclusion
	References

	How Much Do We Perceive Geometric Features, Personalities and Emotions in Avatars?
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Extraction
	3.2 Features Extraction
	3.3 Personality and Emotion Extraction
	3.4 Video Characteristics

	4 Results
	4.1 Geometric Features Perception
	4.2 Personality and Emotion Perceptions

	5 Final Considerations
	A Appendix
	A.1 Visualization of Geometric Features
	A.2 Table of Scenes
	A.3 Questions
	A.4 Table of Results

	References

	High-Dimensional Dataset Simplification by Laplace-Beltrami Operator
	1 Introduction
	1.1 Related Work

	2 High-Dimensional Dataset Simplification
	2.1 Spectrum of LBO and Feature Points
	2.2 Discrete Computation
	2.3 Dataset Simplification by Feature Point Detection
	2.4 Measurement of Fidelity of the Simplified Dataset

	3 Results and Discussion
	3.1 Simplification Results
	3.2 Quantitative Measurement of the Fidelity
	3.3 Comparisons

	4 Conclusion
	References

	VR/AR
	Characterizing Visual Acuity in the Use of Head Mounted Displays
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Hardware and Software Setup
	3.2 Study Protocol
	3.3 Snellen Test
	3.4 Pelli-Robson Contrast Sensitivity Test
	3.5 Central Glare
	3.6 Peripheral Glare
	3.7 Shooting Test

	4 Results
	4.1 Objective Results
	4.2 Subjective Results
	4.3 Discussion

	5 Conclusion
	References

	Effects of Different Proximity-Based Feedback on Virtual Hand Pointing in Virtual Reality
	1 Introduction
	2 Related Work
	2.1 Depth Perception in Virtual Hand Pointing
	2.2 Feedback Cues for 3D Selections

	3 Experiment
	3.1 Participants
	3.2 Apparatus
	3.3 Material
	3.4 Experimental Design
	3.5 Task Procedure
	3.6 Metrics

	4 Result and Analysis
	4.1 Factor Analysis
	4.2 Subjective Evaluation

	5 Discussion
	6 Conclusion
	References

	Virtual Scenes Construction Promotes Traditional Chinese Art Preservation
	1 Introduction
	2 Related Work
	3 Method
	3.1 Scene Primitive Model Generation Based on Semantics
	3.2 Scene Placement Algorithm Based on Priori Probability

	4 Implementation
	4.1 Realization of Scene Primitive Model
	4.2 Scene Placement

	5 Experiment and Discussion
	6 Conclusion
	References

	A Preliminary Work: Mixed Reality-Integrated Computer-Aided Surgical Navigation System for Paranasal Sinus Surgery Using Microsoft HoloLens 2
	1 Introduction
	1.1 A Subsection Sample

	2 Method
	2.1 PC-CSN App
	2.2 PC-SS Extension
	2.3 MR App
	2.4 Experimental Setting

	3 Results
	4 Discussion
	5 Conclusion and Future Works
	References

	Engage
	Algorithms for Multi-conditioned Conic Fitting in Geometric Algebra for Conics
	1 Introduction
	2 Conic Fitting in GAC - Original Algorithm
	2.1 Implementation

	3 Conic Fitting in GAC - Additional Conditions
	3.1 Implementation

	4 Experimental Results and Applications
	5 Conclusion
	References

	Special Affine Fourier Transform for Space-Time Algebra Signals
	1 Introduction
	2 Background
	2.1 Space-Time Algebra
	2.2 Space-Time Fourier Transform (SFT)

	3 Special Affine Space-Time Fourier Transform (SASFT)
	3.1 Defining the SASFT
	3.2 Properties of the SASFT
	3.3 Uncertainty Principle for the SASFT

	4 Conclusion
	References

	On Explicit Formulas for Characteristic Polynomial Coefficients in Geometric Algebras
	1 Introduction
	2 Grade Projections and Operations of Conjugation in Geometric Algebras
	3 Characteristic Polynomials in Geometric Algebras
	4 The Cases n 4
	5 The Case n=5
	6 Conclusions
	References

	Unified Expression Frame of Geodetic Stations Based on Conformal Geometric Algebra
	1 Introduction
	2 Basic Theory and Basic Idea
	2.1 Basic Theory
	2.2 Motion Operator
	2.3 Basic Idea

	3 Unified Expression Frame and ITRF Conversion
	4 Case Study
	5 Conclusion and Discussion
	References

	Never `Drop the Ball' in the Operating Room: An Efficient Hand-Based VR HMD Controller Interpolation Algorithm, for Collaborative, Networked Virtual Environments
	1 Introduction
	2 State of the Art
	3 Room for Improvements
	4 Proposing New Approaches
	4.1 Proposed Method Based on Dual Quaternions
	4.2 Proposed Method Based on Multivectors

	5 Our Results
	6 Conclusions and Future Work
	References

	The Rules of 4-Dimensional Perspective: How to Implement Lorentz Transformations in Relativistic Visualization
	1 Introduction
	2 The Rules of 4-Dimensional Perspective
	3 How to Implement Lorentz Transformations on a Computer
	3.1 Real Quaternions
	3.2 Complex Quaternions
	3.3 Lorentz Transformations
	3.4 4-Vectors

	4 Conclusion
	References

	Author Index

