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Abstract. Conformal geometric algebra (CGA) is a framework that al-
lows the representation of objects, such as points, planes and spheres,
and deformations, such as translations, rotations and dilations as uni-
form vectors, called multivectors. In this work, we demonstrate the mer-
its of multivector usage with a novel, integrated rigged character sim-
ulation framework based on CGA. In such a framework, and for the
first time, one may perform real-time cuts and tears as well as drill
holes on a rigged 3D model. These operations can be performed before
and/or after model animation, while maintaining deformation topology.
Moreover, our framework permits generation of intermediate keyframes
on-the-fly based on user input, apart from the frames provided in the
model data. We are motivated to use CGA as it is the lowest-dimension
extension of dual-quaternion algebra that amends the shortcomings of
the majority of existing animation and deformation techniques. Specif-
ically, we no longer need to maintain objects of multiple algebras and
constantly transmute between them, such as matrices, quaternions and
dual-quaternions, and we can effortlessly apply dilations. Using such an
all-in-one geometric framework allows for better maintenance and opti-
mization and enables easier interpolation and application of all native
deformations. Furthermore, we present these three novel algorithms in
a single CGA representation which enables cutting, tearing and drilling
of the input rigged model, where the output model can be further re-
deformed in interactive frame rates. These close to real-time cut,tear
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and drill algorithms can enable a new suite of applications, especially
under the scope of a medical VR simulation.

Mathematics Subject Classification. Primary 68U05.

Keywords. Conformal geometric algebra (CGA), Skinning, Interpola-
tion, Cutting algorithm, Tearing algorithm, Drilling algorithm, Keyframe
generation.

1. Introduction

In this work, we introduce a novel algorithm to perform drill in the rigged
model and provide further background knowledge for representing and ap-
plying translations, rotations and dilations (uniform scalings) in multivector
form. Furthermore, we give better insight regarding multivector interpola-
tion and provide the updated performance results of our optimized cutting
algorithm.

Rigged models and their animation and deformation techniques have
been among the most studied topics in computer graphics since their incep-
tion, and especially in the past few years due to the rapid growth of the
industry of Virtual/Augmented Reality and computer games.

Although the linear-blend skinning algorithm for rigged models [19] has
not radically changed over the years, the demand for more robust and efficient
real-time implementations of the animation, led researchers into developing
more complex mathematical frameworks to enhance the overall performance
and decrease running times. Originally [1], the animation techniques were
based on matrix representation of the three basic deformations: translation,
rotation and dilation. The core idea was to be able to apply these defor-
mations to 3D point by simply multiplying the respective matrices, in the
desired order, with the homogeneous coordinates of the point. Since matrix
multiplications are extremely fast to perform due to GPUs’ ability of parallel
processing, matrices became and still remain the favorite representation class
of deformations for the majority of current state-of-the-art skeletal animation
frameworks.

The major drawback of using matrices was discovered when the need
of creating interpolated keyframes highlighted the fact that the interpolation
result of two rotation matrices does not correspond to a rotation matrix. The
idea of using the original Euler angles instead of the derived rotation matrix
did not solve the problem as it yielded an even greater one; the famous gimbal
lock. Modern implementations tackle the issue, using quaternions; an algebra
of 4 dimensions, originally introduced by Hamilton in 1843. Quaternions,
often denoted by H, are an extension of the complex numbers, using two
more negative dimensions, i.e., they include, besides i, two more distinct
imaginary basis elements j, k such that j2 = k2 = −1. It was proved that a
certain subset of quaternions, called unit quaternions, could encapsulate the
essence of a rotation and also support interpolation.
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The idea of using unit quaternions to store rotations provided a solution
to the matrix interpolation problem and remains until today the world stan-
dard in computer graphic’s modern engines. However, it also introduced the
need to constantly transmute rotations from quaternion to matrix form and
vice versa in every intermediate step, adding an extra performance burden.
Matrices are still needed in such implementations to store translation and
dilation data, while vertices are kept in homogeneous coordinates.

As in improvement to this situation, an algebraic extension of quater-
nions called dual quaternions was used [17]. A specific subset of these 8-
dimensional objects, called the unit dual quaternions, was proved to be able
to uphold both rotation and translation data and still allow for effortless
and inexpensive linear blending. Nevertheless, this advance did not solve the
uniformity problem, however it reduced artifacts appearing during animation
[16], while further post-processing can be used to further minimize them [18].

Our approach utilizes the CGA framework to perform both model an-
imation and more complex techniques such as cutting, tearing and drilling.
CGA is an algebra containing of dual-quaternions, where all entities such as
vertices, spheres, planes as well as rotations, translations and dilation are uni-
formly expressed as multivectors [9,13,27]. The usage of multivectors allows
model animation without the need to constantly transmute between matri-
ces and (dual) quaternions, enabling dilation to be properly applied along
with translation [22,23]. Furthermore, the interpolation of two multivectors
of the same type correctly produces the expected intermediate result [12],
which makes creation of keyframes trivial to implement. Finally, usage of the
proposed framework demands a single representation type for all data and
results, which is the current trend in computer graphics [21].

The use of Conformal Geometric Algebra and multivector representation
allows the creation of simpler algorithms to perform complicated tasks, as
fundamental geometric predicates are baked in the framework. For example,
the intersection of two planes can be determined by simply evaluating they
geometric product.

Therefore, complex operations such as cutting, tearing and drilling a
model are now easier to be accomplished, with near real-time results. Such
operations have become a major research topic as they appear in increasing
frequency in real-time simulation applications, for both academic as well as
industrial purposes. Current algorithms [7,29] handle such deformations using
tetrahedral mesh representations of the model, which demands a heavy pre-
processing to be performed. Since originally introduced, cutting and tearing
methods have been upgraded and extended to allow almost real-time results,
using mostly finite element methods, intuitive optimization and heavy pre-
processing [4,6,20]. To make the final results even more realistic, physics
engines utilizing position-based dynamics are used to simulate soft-tissue cuts
at the expense of performance [2,3,5].

Our contribution The novelty of our work involves the complete imple-
mentation of rigged model animation in terms of CGA, extending the work
of Papaefthymiou et al. [22] in a python-based implementation that enables
keyframe generation on-the-fly. The original animation equation involving
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matrices is translated to its equivalent multivector form (see Sect. 4.1) and all
information required to apply the linear blend skinning algorithm (vertices,
animation data) is obtained from the model and translated as multivector.
This enables us to have future animation models in CGA representation only,
which, in combination with an optimized GPU multivector implementation,
produces faster results under a single framework. Another major novelty of
our work is the cutting, tearing and drilling algorithms that are being ap-
plied on top of the previous framework; given the input animated model, we
perform cuts, tears and drills on the model surface with the ability to fur-
ther re-deform the newly processed model. The subpredicates used in these
algorithms utilize the multivector form of their input, so they can be imple-
mented in a CGA-only framework. Their design was made in such a way that
little to no pre-processing of the input model is required while allowing a
future integration with a physics engine. Furthermore, using our method, we
can generate our own keyframes instead of just interpolating between pre-
defined ones. Our all-in-one CPU python implementation is able to process
an existing animation model (provided in .dae or .fbx format) and trans-
late the existing animation in the desired CGA form while further tweaks or
linear-blend deformations are available in a simple way to perform. Such an
implementation is optimal as far as rapid prototyping, teaching and future
connection to deep learning is concerned. It also constitutes the base for in-
teractive cutting, tearing and drilling presented in Sect. 4.2. The simplicity
and robustness of our algorithms design promise real-time results if run in a
compiled programming language such as C++ or C#.

2. Introduction to Conformal Geometric Algebra

The Conformal Geometric Algebra (CGA) used in this paper can be seen
as another algebra containing dual-quaternions which allows round elements
such as spheres to be represented as objects of this algebra, i.e., as multivec-
tors. To be more precise, CGA is the lowest possible extension where this is
possible. Being able to represent round elements in conjunction with the abil-
ity to reflect on objects using the so-called sandwich operation presented in
the following sections, CGA is also able to represent dilators (uniform scaling)
as multivectors. Therefore, CGA is a geometric algebra where round elements
(points, spheres, circles), flat elements (lines, planes, point pairs) and all basic
deformations (translations, rotations, dilations) can be expressed explicitly
in multivector form.

In order to create the model of 3D CGA, we extend the basis {e1, e2, e3}
of the original Euclidean space R3 by two elements e+ and e−. These elements
have positive and negative signature respectively, i.e., it holds that e2

+ =
−e2

− = 1. The resulting non-Euclidean space is usually denoted as R4,1 while
the Clifford (geometric) algebra of R4,1 is denoted as R4,1 or G(4, 1).

It is convenient to define a null basis given by the original basis vectors
e1, e2, e3 of R3 and
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eo =
1
2
(e− − e+), e∞ = e− + e+. (1)

The elements eo and e∞ are called null vectors because e2
o = e2

∞ = 0, where
the operation implied is the geometric product described in the following
sections.

2.1. Vector Objects of R4,1

A generic vector Y of R4,1 is a linear combination of the basis elements
{e1, e2, e3, e∞, eo}, i.e.,

Y = y1e1 + y2e2 + y3e3 + y∞e∞ + yoeo, yi ∈ R. (2)

Note that CGA is a projection space where the elements Y and Z are
equivalent if and only if there is a λ ∈ R such that Y = λZ. Due to this
equivalence, we usually assume, without loss of generality, that the coordinate
of eo is either 0 or 1. In this algebra, points, spheres and planes are easily
represented as vector objects of the space, as described below.

Points A point x = (x1, x2, x3) = x1e1+x2e2+x3e3 of R3 is up-projected
into the conformal vector

X = x +
1
2
x2e∞ + eo

= x1e1 + x2e2 + x3e3 +
1
2
(x2

1 + x2
2 + x2

3)e∞ + eo. (3)

Spheres A sphere s of the R
3, centered at x = (x1, x2, x3) with radius r

is up-projected into the conformal vector

S = X − 1
2
r2e∞

= x1e1 + x2e2 + x3e3 +
1
2
(x2

1 + x2
2 + x2

3 − r2)e∞ + eo, (4)

where X is the image of x in R4,1.
Planes A plane π of the original space, with Euclidean distance d from
the origin, perpendicular to the normal vector �n = (n1, n2, n3) is up-
projected into the conformal vector

Π = �n + de∞ = n1e1 + n2e2 + n3e3 + de∞. (5)

2.2. Products in R4,1

There are three major products in R4,1: the inner, the outer and the geomet-
ric. Each of these products is initially defined among the vectors e1, e2, e3,
e−, e+, eo, e∞. The respective definition is then extended to any element (a
multivector) of the space. Below we present some of the basic properties of
these products; further information can be found in [9,13].

Inner The inner product (denoted by ·) of the basis elements is defined
as follows:

• ei · ej := δij for i, j ∈ {1, 2, 3,+},
• e− · e− := −1,
• e− · ej := 0 for j ∈ {1, 2, 3,+},
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• eo · eo := e∞ · e∞ = 0,
• eo · e∞ := −1,
• ei · ej := 0 for i ∈ {1, 2, 3,+} and j ∈ {o,∞}.

Outer The outer product of the basis elements ei and ej is denoted as
ei∧ej . The outer product is an associative operation that can be applied
to more than two elements, e.g., ei ∧ ej ∧ ek and ei ∧ ej ∧ ek ∧ e∞ are
properly defined. The outer product of k basis vectors is called a k-blade
and k is usually referred to as the grade of this blade. A sum of k-blades
is called a k-vector and the addition of k-vectors of different grades is a
multivector.
The importance of the outer product derives from the fact that it allows
us, in certain cases, to obtain the intersection of two objects by simply
evaluating their outer product. Specifically, a circle (resp. line) can be
seen as the intersection - outer product of two spheres (resp. planes). The
outer product of a circle with an intersecting sphere or equivalently, the
outer product of three intersecting spheres represent a set of two points,
usually referred to as a point pair.
Geometric The most important product in R4,1 is the so-called geomet-
ric product. For the basis vectors ei and ej , their geometric product
eiej is defined as the addition of the outer and inner product of the
elements, i.e.,

eiej := ei ∧ ej + ei · ej .

Note that, by the definition, eiej = ei ∧ ej for every i, j ∈ {1, 2, 3,∞, o}
such that i �= j and {i, j} �= {∞, o}.

2.3. Dual Objects

First, let us denote the pseudoscalar I of R4,1,

I := e1 ∧ e2 ∧ e3 ∧ e+ ∧ e− = e1 ∧ e2 ∧ e3 ∧ e∞ ∧ eo. (6)

Using I, we may define the dual object m� of a multivector m is to be

m� := −mI, (7)

where the operation between m and I is the geometric product. Notice that
it holds that (m�)� = −m and therefore we can easily obtain the normal
form m of an object from it’s dual form m� and vice versa.

The dual form of certain objects holds strong geometric meaning, as
described below.

• The outer product of 4 non-coplanar points yields the dual form of the
sphere defined by these points.

• The outer product of 3 non-collinear points and e∞ yields the dual form
of the plane defined by these points.

• The outer product of 3 non-coplanar points yields the dual form of the
circle defined by these points.

• The outer product of 2 points and e∞ yields the dual form of the line
defined by these points.
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2.4. Rotations, Translations and Dilations

So far we have shown that objects (or their duals) such as points, planes,
circles, spheres, lines and point pairs are represented as multivectors. How-
ever, the beauty and versatility of this algebra comes from its ability to also
represent rotations, translations and dilations as multivectors as described
below.

Rotation. A rotation in CGA is encapsulated in a multivector

R := exp
(

−b
φ

2

)
= exp

(
−I3u

φ

2

)
= cos

(
φ

2

)
− uI3 sin

(
φ

2

)
, (8)

where φ is the angle of the rotation, b is the normalized plane of the rotation, u
is the normalized axis of the rotation and I3 := e1e2e3. All products are
geometric products and exp(·) denotes the exponential function. The inverse
multivector of R is

R−1 := exp
(

b
φ

2

)
= exp

(
I3u

φ

2

)
= cos

(
φ

2

)
+ uI3 sin

(
φ

2

)
. (9)

Translation. The multivector

T := exp
(

−1
2
te∞

)
= 1 − 1

2
te∞, (10)

where t = t1e1 + t2e2 + t3e3 is a euclidean vector, represents a translation
by t in CGA. The inverse multivector of T is

T−1 := exp
(

1
2
te∞

)
= 1 +

1
2
te∞. (11)

Dilation. The multivector

D = 1 +
1 − d

1 + d
e∞ ∧ eo (12)

corresponds to a dilation of scale factor d > 0 with respect to the origin. The
inverse of D is given by the expression

D−1 =
(1 + d)2

4d
+

d2 − 1
4d

e∞ ∧ eo. (13)

An interesting remark is that, for d = 0, it holds that D = 1 + e∞ ∧ eo =
1 + e+e−, which is clearly not invertible in R4,1 as (e+e−)2 = 1.

The conformal space model allows us to apply any or multiple of the op-
erations above not only to a point but also to any object O that was previously
defined. Let Mi, for i = 1, . . . , n, be either a rotation, a translation or a dila-
tion as defined above. To apply the transformations M1,M2, . . . Mn (in this
order), to an object O, we first define the multivector M := MnMn−1 · · · M1,
where all in-between products are geometric. The object

O′ := MOM−1 (14)

represents the final form of O after all transformations are applied.
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2.5. Interpolation of Multivectors

Interpolation of data is an essential part for Computer Graphics as it is
needed in every animation procedure of a rigged model. The poses of the
model with respect to time are not stored in a continuous manner but rather
at discrete time-steps. If additional intermediate frames are demanded, we
have to interpolate the animation data between two provided keyframes.

As in the case of matrix ([1]) or (dual) quaternion quaternion interpola-
tion [16], a blending of two multivectors can be accomplished in various ways,
yielding different results [12,26]. Choosing a proper interpolation technique
is not a simple task as it may depend on the model or other factors. How-
ever, two methods remain dominant in analogue with the quaternion case:
the linear and the logarithmic blending.

Linear blending of the multivectors m1 and m2, which, in a model ani-
mation context, may represent translations, rotations or dilations, is done by
evaluating (1 − α)m1 + αm2, for α ∈ [0, 1]. Another blending method is the
so-called logarithmic interpolation where we evaluate m1 exp(α log(m−1

1 m2)),
for α ∈ [0, 1], where the exponential and logarithmic function of a multivec-
tor m are approximated in our case using the respective Taylor series expan-
sion. Notice that m1 is either a rotator, a translator, a dilator with d > 0 or a
geometric product of such multivectors and therefore is invertible. Although
not evident, one can prove that that the logarithmic interpolation method is
symmetric if we interchange m1 and m2 as well as α and 1−α, by using basic
exponential and logarithmic properties. Using different blendings, we obtain
different results, as shown in Fig. 1. More information regarding the evalua-
tion and properties of multivector logarithms/exponentials can be found in
[8,10,23,25].

In our framework, linear blending is preferred when generating frames
on-the-fly by the user, whereas logarithmic blending is used when reading the
models existing animation data.

3. State of the Art

The current state of the art regarding skeletal model animation and defor-
mation is based on the linear-blend skinning algorithm [19] and the repre-
sentation of bones animation via transformation matrices and quaternions
or dual-quaternions. Such an implementation allows for efficient and robust
interpolation methods between keyframes. A shortcoming of such an imple-
mentation is the inability to represent a dilation as a quaternion or dual-
quaternion , which forces the use of multiple representations and frameworks
[22].

To be more precise regarding the mechanics of the deformation process,
in the case of a simple rigged model, every bone bi amounts to an offset
matrix Oi and an original transformation matrix ti. The skin of the model
is imported as a list of vertices v and a list of faces f . A bone hierarchy
is also provided where {ti} are stored along with information regarding the
animation of each joint. This information, usually referred to as TRS data,
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Figure 1. Linear Versus Logarithmic Interpolation. Three
vertex points defining a triangular face are interpolated. This
face is interpolated between the bottom blue and top grey
keyframe. Both the vertices as well as translation (t), rota-
tion (r) and scaling(s) data that are interpolated in their
multivector form. In A, we have used a classic linear inter-
polation, whereas in B we have used a logarithmic blending.
In C, the outcomes of these two methods are superimposed

is provided in the form of a quaternion, a translation vector and a scaling
vector that represent respectively the rotation, displacement and scaling of
the joint with respect to the parent joint for each keyframe (see Sect. 3.1).

In order to determine the position of the skin vertices at any given
time k and therefore render the scene by triangulating them using the faces
list, we follow the steps described below. Initially, a matrix G is evaluated as
the inverse of the transformation matrix that corresponds to the root node.
Afterwards, we evaluate the global transformation matrix for every bone bi at
time k and denote it as Ti,k. To evaluate all Ti,k, we recursively evaluate the
matrix product Tj,kti,k where bj is the parent bone of bi, given that Tr,k is the
identity matrix (of size 4), where br denotes the root bone. The matrix ti,k
is a transformation matrix equal to ti if there is no animation in the model;
in this case, our implementation allows to generate the keyframes ourselves
in real-time. Otherwise, ti,k is evaluated as

ti,k = TRi,kMRi,kSi,k (15)

where TRi,k,MRi,k, Si,k are the interpolated matrices that correspond to the
translation, rotation and scaling of the bone bi at a given time k.

After evaluating the matrices {Ti,k} for all bones {bi}, we can evaluate
the global position of all vertices at time k, using the rigged deformation
equation:
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Vk[m] =
∑

n∈Im

wm,nGTn,kOnv[m] (16)

where
• Vk[m] denotes the skin vertex of index m (in homogeneous coordinates)

at the animation time k,
• Im contains up to four indices of bones that affect the vertex v[m],
• wm,n denotes the “weight”, i.e., the amount of influence of the bone bn

on the vertex v[m],
• On denotes the offset matrix corresponding to bone bn, with respect to

the root bone,
• G denotes the inverse of the transformation matrix that corresponds to

the root bone (usually equals the identity matrix) and
• Tn,k denotes the deformation of the bone bn at animation time k, with

respect to the root bone.

3.1. State-of-the-Art Representation

The modern way to represent the TRS data of a keyframe is to use matrices
for the translation and dilation data as well as quaternions for the rotation
data. Let {TRi, Ri, Si}, denote such data at keyframe i ∈ {1, 2}, where:

• TRi =

⎡
⎢⎢⎣

1 0 0 xi

0 1 0 yi

0 0 1 zi

0 0 0 1

⎤
⎥⎥⎦ and Si =

⎡
⎢⎢⎣

sxi 0 0 0
0 syi 0 0
0 0 szi 0
0 0 0 1

⎤
⎥⎥⎦ represent the translation

by (xi, yi, zi) and the scale by (sxi, syi, szi) respectively, and
• Ri is a quaternion representing the rotation.

Note that these matrices and quaternions are extracted from a provided an-
imated rigged model file (usually a *.dae or *.fbx file) or could be created
on-the-fly by the user. Before quaternions, Euler angles and the derived ro-
tation matrices were used to represent rotation data. However the usage of
such matrices induced a great problem: a weighted average of such matrices
does not correspond to a rotation matrix and therefore interpolating between
two states would require interpolating the Euler angles and re-generate the
corresponding matrix. This in turn would sometimes lead to a gimbal lock or
to ‘candy-wrapper’ artifacts such as the ones presented in [16].

The usage of quaternions allowed for easier interpolation techniques
while eradicating such problems. Nevertheless, a transformation of the in-
terpolated quaternion to corresponding rotation matrix was introduced since
the GPU currently handles only matrix multiplications in a sufficient way
for skinning reasons. Therefore, the interpolation between the two keyframes
mentioned above follows the following pattern:

1. the matrices TRa = (1 − a)TR1 + aTR2 and Sa = (1 − a)S1 + aS2 are
evaluated for a given a ∈ [0, 1],

2. the quaternion Ra = (1 − a)R1 + aR2 is determined and finally,
3. the rotation matrix MRa that corresponds to Ra is calculated.

The interpolated data TRa,MRa and Sa are then imported to the GPU
in order to determine the intermediate frame, based on the equation (16). The
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calculation of the intermediate keyframes amongst multiple ones, is either
performed via explicit selection of those contained in the offline animation
file or they are generated procedurally via interpolation blending, via the
tweening method.

Using the method proposed in this paper, all data are represented in
multivector form. A major implication of this change is that the interpolation
between two states is done in a more clear and uniform way as presented in
Sect. 4. This also makes the need to constantly transform a quaternion to a
rotation matrix redundant, although we are now obliged to perform multi-
vector additions and multiplications as well as down project points from R

4,1

to R
3 to parse them to the GPU. However, since all our data and intermediate

results are in the same multivector form, we could (ideally) program the GPU
to implement such operations and therefore greatly improve performance.

4. Our Algorithms and Results

4.1. Multivector Form of the Rigged Deformation Equation

The deformation Eq. (16), core of the animation algorithm, yields fast results
(especially when combined with a GPU implementation) but denies us a
robust way to dilate with respect to a bone. Our motivation is to extend and
apply the animation equation for multivector input as proposed in [22].

To be more specific regarding our method, we propose the replacement
of all matrices appearing in (16) with multivectors for animation purposes.
The transformation matrix of ti of each bone bi as well as all information
regarding translation and rotation for each keyframe, initially extracted from
the provided model file, can be easily converted to multivectors [9,13]. Con-
sequently, we can evaluate the multivector Mi,k which is equivalent to the
matrix Ti,k by following the same procedure of determining the latter (de-
scribed in Sect. 3) while substituting all involved matrices with the corre-
sponding multivectors.

Note that various techniques can be used to interpolate between two
keyframes to obtain Mi,k; for existing keyframes logarithmic blending is pre-
ferred [12,16], whereas for keyframe generation we use linear blending. In
both scenarios, the intermediate results are multivectors of the correct type.

Furthermore, each offset matrix On and each skin vertex v[m] is trans-
lated to their CGA form Bn and c[m] respectively. Finally, G matrix is nor-
malized to identity and is omitted in the final equation.

Our final task is to translate in CGA terms the matrix product

Tn,kOnv[m],

where apparently each multiplication sequentially applies a deformation to
vertex v[m]. To apply the respective deformations, encapsulated by Mn,k and
Bn, to CGA vertex c[m], we have to evaluate the sandwich geometric product
(Mn,kBn)c[m](Mn,kBn)� where V � denotes the inverse multivector of V (see
[13,17] for details).

Summarizing, if the multivector form of the vertex Vk[m], which corre-
sponds to the final position of the m-th vertex at animation time k, is denoted
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by Ck[m], then the multivector deformation equation becomes

Ck[m] =
∑

n∈Im

wm,n(Mn,kBn)c[m](Mn,kBn)� (17)

After the evaluation of Ck[m] for all m, we can down-project all these con-
formal points to the respective euclidean ones in order to represent/visualize
them and obtain the final result of the keyframe at time k.

The replacement of matrices with multivectors enables the introduction
of dilations in a simple way. The multivector Mi,k that represents a rotation
and translation with respect to the parent bone of bi can be replaced with
Mi,kDi,k where Di,k is the corresponding dilator and the operation between
them is the geometric product. The dilator corresponds to a scale factor with
respect to the parent bone, information that could not be easily interpreted
via matrices. However, since the application of a motor and/or a dilator to a
vertex is a sandwich operation, such a dilation becomes possible when using
multivectors.

A comparison between the results of our proposed method and the cur-
rent state-of-the-art is shown in Fig. 2, where we successfully apply dilation
to different bones and obtain similar results. Rotations, dilations and trans-
lations are obtained in our method using multivectors only, under a single
framework with simpler notation/implementation; linear blending is used to
interpolate between keyframes.

4.2. Cutting, Tearing and Drilling Algorithms

A novelty we present in this paper is the cutting, tearing and drilling al-
gorithms on skinned triangulated models. As the name suggests, the first
module enables the user to make a planar cut of the model whereas the sec-
ond is used to perform smaller intersections on the skin. The last module can
be utilized to drill holes in the skinned model. In the following sections, we
provide a detailed presentation of the algorithms involved as well as certain
implementation details.

4.2.1. Cutting Algorithm. Cutting a skinned model is implemented in cur-
rent bibliography in many forms [7,14,24,30,31]. The most common tech-
nique is via the usage of tetrahedral meshes [4] which require a heavy pre-
processing on the model and currently do not enable further animation of
the model or scale to VR environments. Our work includes an algorithm for
planar model cut, where the final mesh is deformable, as we implemented a
function to calculate weights for all additional vertices that did not originally
exist (see Fig. 3). Most of the subpredicates used in the cutting algorithm
are implemented in terms of conformal geometry and therefore can be used
even if the model is provided in multivector form.

Our proposed planar cut implementation is summarized as Algorithm 1.
A description of how we tackle the weight evaluation in step 2 is found in
Sect. 4.3. Our algorithm does not require tetrahedral meshed models and
requires minimum to none pre-processing. It is GA-ready and the low number
of operations it demands make it suitable for VR implementations.
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Figure 2. Skinning via the multivectors versus skinning via
the dual quaternions. The original model is deformed using
multivectors and depicted in magenta wireframe, superim-
posed with the color-graded result (based on the z coordinate
of each vertex) of the quaternion method for the same de-
formation. It is qualitatively verified that linear blending of
multivectors produces similar results with the current state-
of-the-art method. Evaluating the vector differences of all
vertices for the two methods, we have evaluated the approx-
imation error assuming the quaternion method to be the
correct, using the infinity (�∞) norm. A We applied a slight
rotation on the neck joint, resulting in approximation error
0.3%. B We applied a slight dilation on the neck joint, ap-
proximation error is 0.00035%. C We applied a slight trans-
lation on the neck joint, approximation error 1%. The model
used contains 1261 vertices and 1118 faces

4.2.2. Tearing Algorithm. The purpose of this module is to enable partial
cuts on the skinned model, in contrast with the cutting module where the
cut is, in a sense, complete. The importance of this module derives from the
fact that most of the surgical incisions are partial cuts and therefore they are
worth replicating in the context of a virtual surgery. Towards that direction,
our work involves an algorithm that both tears a skinned model and also
enables animation of the final mesh (see Figures 4 and 5).

To understand the philosophy behind the design of the tearing algorithm
that is described below, one must comprehend the differences between cutting
and tearing. In tearing, the movement of a scalpel defines the tear rather
than a single plane. To capture such a tear in geometric terms, we have to
take into consideration the location of the scalpel in either a continuous way
(e.g., record the trail of both endpoints of the scalpel in terms of time) or
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Figure 3. Cutting module intermediate steps. A The orig-
inal animated model. B The model where the (red) intersec-
tion points of the cutting plane and the mesh are calculated
and re-triangulated. C The model after the cut. D The model
is deformed by a rotation (axis=(0, 1, 1), 0.7 rad), a transla-
tion (vector=(13, 0, 0)) and a dilation (factor = 0.5) at joint
1 (elbow), as well as another rotation (axis=(0, 1, 1), 0.3 rad)
at joint 2 (wrist). Note that minimal artifacts occur in the
final result. The vertices in D are colored depending on the
influence of joint 1 which is mostly deformed. The vertices
in A–C are colored based on their z coordinate
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Figure 4. Tearing module intermediate steps. A The orig-
inal animated model and the scalpel’s position at two con-
secutive time steps. B The plane defined by the scalpels
(depicted as a red triangle) intersects the skin in the yel-
low points. C The intermediate points are used in the re-
triangulation, and are ńpushedż away from the cutting plane
to form an open tear

a discrete way (e.g., know the position of the scalpel at certain times ti).
For VR purposes, the latter way is preferred as it yields results with better
fps, since input is hard to be monitored and logged continuously in a naive
way. For these reasons, our implementation requires the scalpel position to
be known for certain ti.

The proposed tearing algorithm is summarized in Algorithm 2. A de-
scription of how we tackle the weight evaluation in step 4 is found in Sect. 4.3.

Our major assumption is that all intermediate intersection points lie on
this plane, which is equivalent to the assume that the tearing curve is smooth,

Algorithm 1 Cutting Algorithm

Input: Triangulated Mesh M = (v, f) (f is the face list), and a plane Π.
Output: Two meshes M1 = (v1, f1) and M2 = (v2, f2), result of M getting

cut by Π
1: Evaluate (using GA) and order the intersection points of Π with each

face of M .
2: Evaluate the weights and bone indices that influence these points.
3: Re-triangulate the faces that are cut using the intersection points.
4: Separate faces in f1 and f2, depending on which side of the plane they

lie.
5: From f1 and f2, construct M1 and M2.
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Figure 5. Deformation of a torn model. A The original
model after applying the tear. B Two rotations are applied to
the torn model, one at elbow joint around y-axis by −1 rad,
and another at wrist joint around y-axis by 1 rad. C A dila-
tion of scale 1.5 is applied to the torn model, at elbow joint.
D A translation is applied to the torn model at elbow joint
with translation vector (18, 0, 0). In all cases, minor artifacts
only arise, despite the great magnitude of the applied de-
formations. In B–D, vertices are colored depending on the
influence of elbow joint which is mostly deformed. In A, ver-
tices are colored based on their z coordinate

Algorithm 2 Tearing Algorithm

Input: Triangulated Mesh M = (v, f), and scalpel position at time steps ti
and ti+1

Require: Scalpel properly intersects M at these time steps
Output: The mesh Mt = (vt, ft) resulting from M getting torn by the scalpel
1: Determine the intersection points Si and Si+1 of M with the scalpel at

time step ti and ti+1 respectively.
2: Determine the plane Π, containing Si and the endpoints of scalpel at

time ti+1. Small time steps guarantee that Π is well-defined.
3: Evaluate the intersection points Qj of Π and M , s.t. the points

Si,Q0,Q1,. . .,Qm,Si+1 appear in this order on Π when traversing the skin
from Si to Si+1.

4: Assign weights to points Si, Si+1 and all Qj .
5: Re-triangulate the torn mesh, duplicating Qj vertices.
6: Move the two copies of Qj away from each other to create a visible tear

(optional).
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given that ti and ti+1 are close enough. In our implementation, during step 6,
the intermediate torn points are moved parallel to the direction of the normal
of the plane Π and away from it, to replicate the opening of a cut human
tissue.

4.2.3. Drilling Algorithm. The usage of Virtual Reality by surgeons and their
need to drill holes in a simulated 3D model motivated the creation of the
drilling module. Given a triangulated mesh and finite cylindrical drill, we
would like to evaluate the mesh that corresponds to the drilled model.

Designing the drilling predicate was more intriguing, compared to the
respective cutting and tearing algorithms, as multiple ideas turned out to
be inadequate. The initial idea of substituting the cylinder with a prism of
n-surfaces, for some suitable n, looked promising enough, as it would enable
using drill as a special case of tear. However, one would have to provide an
easy way to determine an n that would be sufficiently large to produce a
smooth hole-like effect in the outcome mesh. On the other hand, choosing an
arbitrary large n would result in many surfaces and therefore many costly
tear operations had to be performed, hindering our chances of a real-time
implementation. The prismatic approach also yielded the question of how to
choose the position the edges of the prism such that the intersection points of
the prism and the mesh would be re-triangulated in a clever and robust way.
Of course, if the edges of the prism were selected such that they intersected
the mesh’s faces only on their boundaries, the re-triangulation would be more
efficient and not produce a lot of slither faces. However, if we had to decide the
optimal prism, that would be equivalent to specify the intersection points of
all mesh edges with our initial cylinder, which is the idea behind our proposed
algorithm.

In the core of our drill module lies a point-versus-cylinder predicate
that allows us to determine the intersection point of every edge of the given
mesh with the cylindrical drill. Since the drill is described by its radius r
and two endpoints A (the “tip” of the drill) and B that define its axis,
we can easily determine the plane Π that is perpendicular to its axis and
goes through B. Given an edge e defined by the vertices vi and vj of the
mesh, we first determine if any of these two vertices lie inside the semi-finite
cylinder (we ignore the existence of A for now and consider that the cylinder
is only bounded by Π and goes indefinitely towards the direction of A). To
accomplish such task for the vertex v ∈ {vi, vj}, we project it to the plane
Π and compare the distance of the projected point P (v) and B with r; if it
is smaller (respectively larger) then v lies strictly inside (resp. outside) the
cylinder. In the case of equality, the vertex v lies on the cylinder.

If the vertices vi and vj lie on different sides with respect to the cylinder,
then we first evaluate the intersection point of the edge defined by μ := P (vi)
and ν := P (vj) with the sphere centered at B with radius r. The coordinates
of μ and ν can be explicitly determined as they are the projections of the
points vi and vj respectively on the plane going through B with normal
�n = �AB/|| �AB||. Therefore, the projected image of �v ∈ {vi, vj} on the plane
is �v − 〈�n, �v − �OB〉�n, where 〈·, ·〉 denotes the classic inner product.
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Since every point on the projected edge is of the form αμ+(1−α)ν for
some α ∈ [0, 1], and the edge is intersected by the sphere - as it is intersected
by the cylinder- there exists an α that corresponds to the intersection point.
For this α, the point ξ := αμ + (1 − αν must have exact distance from B
equal to r. If d(·, ·) denotes the Euclidean distance, solving the equation
d2(ξ,B) = r2 in terms of α yields that α is a root of the quadratic equation
Kα2 + Lα + N = 0, where

K = (xμ − xν)2 + (yμ − yν)2 + (zμ − zν)2 �= 0, (18)

L = 2(xμ − xν)(xν − xB) + 2(yμ − yν)(yν − yB)

+ 2(zμ − zν)(zν − zB), (19)

N = (xν − xB)2 + (yν − yB)2 + (zν − zB)2 − r2, (20)

and ξ = (xξ, yξ, zξ), for ξ ∈ {μ, ν,B}.
Therefore, we conclude that α is the only root of the quadratic that

belongs in [0, 1]. Since for this α, the point αP (vi) + (1 − α)P (vj) is the
intersection of the cylinder with the projected edge, the point αvi +(1−α)vj

is a good approximation of the intersection point of cylinder with the original
edge.

Except of the basic edge-cylinder intersection where the endpoints vi

and vj of the edge lie on different sides with respect to the cylinder, another
two cases have to be taken into consideration. It is possible that both end-
points lie outside of the cylinder but the edge intersects the cylinder in two
points or is tangent to the cylinder in one point. These cases are equivalent to
both P (vi) and P (vj) lying outside the spheres centered at B with radius r
and the quadratic Kα2 + Lα + N = 0 has one or two root(s) α ∈ [0, 1]. As
before, the intersection point(s) is(are) approximated by αvi + (1 − αvj for
these α.

After evaluating the intersection points of the drill with the model and
since all of them lie on some edge of the original mesh, a robust and efficient
triangulation can be easily applied. If the number of intersection points is
below some threshold, e.g., 6, we can perform a “split” operation on all
affected faces and drill again. To split a triangular face one may connect
the middle points of all edges and therefore create four smaller sub-triangles
similar to the original. This operation will create a more “dense” triangulation
in the specific part of the model, resulting in more intersection points with
the drill and hopefully in a more realistic result. Although generating more
intersection points when needed is not a difficult task, we have to take into
consideration that it has to be done in a clever way so as not to hinder the re-
triangulation process in terms of performance or implementation complexity.

The results of our drilling module when applied to our arm model are
demonstrated in Fig. 6. As in the precious modules, we can assign weights
to the newly introduced intersection points, allowing re-deformation of the
drilled model. The outline of the proposed drilling algorithm is described in
Algorithm 3. A summary of how we address the weight evaluation in step 4
is found in Sect. 4.3.
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Figure 6. Drilling module intermediate steps. A The drill
intersects the model skin in the yellow points. B The inter-
section points are used in the re-triangulation. C The elbow
joint of the drilled model is translated by (1, 1, 1), rotated by
0.3 rad around all 3 axis and then dilated by a factor of 2.
The weight function ensures that minimal to no artifacts
arise in the drilled area despite the deformation

Algorithm 3 Drilling Algorithm

Input: Triangulated Mesh M = (v, f) and drill position via its endpoints A
(“tip” of the drill),B and radius r.

Require: Drill properly intersects M
Output: The mesh M ′ = (v′, f ′) resulting from M being drilled
1: Let Π denote the plane perpendicular to the drill axis going through the

endpoint B.
2: Determine the faces of M that are pierced by the drill and run a BFS

algorithm that checks, for this and all neighboring faces, if at least one of
its three vertices, when projected to Π, has distance from B less than r,
i.e., if it lies within the drill. Mark such a face as “affected”.

3: For all affected faces, determine in the plane Π the intersection points
of the drill and the projected face and then down-project them to the
original mesh.

4: Assign weights to the intersection points of the original mesh.
5: Re-triangulate the drilled mesh by replacing the affected faces by appro-

priate ones.

4.3. Implementation Details and Performance Remarks

The main framework used for skinning and animation with the use of mul-
tivectors is Python’s PyAssimp1 and Clifford2 package for the evaluation

1Homepage: https://pypi.org/project/pyassimp/
2Homepage: https://clifford.readthedocs.io/

https://pypi.org/project/pyassimp/
https://clifford.readthedocs.io/
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of the vertices and the Meshplot package for rendering the model. The use
of Python language was preferred for a more user and presentation-friendly
experience; for a more robust and efficient implementation C++ would be
advised.

An instance of a class called v w is used to store for each vertex a list
of up to 4 bones that influence it along with the corresponding influence fac-
tors. The node tree is then traversed and all information regarding rotation,
translation and dilation are translated to multivectors [9,13] and also stored
in the instance for convenience. In order to evaluate the final position of the
vertices, all that is left is to to evaluate the sum in Eq. (17) for all vertices
and down project it to R

3, for each vertex. There are two possible ways of
achieving this task. The first way is to evaluate the sum and then down
project the final result to obtain each vertex in Euclidean form. The second
way is to down project each term and then add them to get the final result.
Although not obvious, the second method yields faster results since the ad-
dition of 4 multivectors (32-dimensional arrays) and one down-projection is
slower than down-projecting (up to) 4 multivectors and adding 4 euclidean
vectors of dimension 3.

A final implementation detail regards the weight evaluation for newly
added vertices in the cutting and tearing modules. In the former module,
such vertices necessarily lie on an edge of the original mesh, whose endpoints
both lie on different sides of the cutting plane. Another method is the one
used in the tearing module where the intersection point can also lie inside a
face. Assuming the point X lie somewhere on the face ABC, we can explicitly
write OX = pOA+qOB+rOC for some a, b, c ∈ [0, 1] such that p+q+r = 1.
The tuple (p, q, r) is called the barycentric coordinate of X with respect to
the triangle ABC. Each of the vertices A,B,C are (usually) influenced by
up to 4 bones, so let us consider that they are all influenced by a set of
N(≤ 12) vertices, where the bones beside the original 4 have weight 0. Let
wA, wB , wC , wX denote the vectors containing the N weights that correspond
to vertices A,B,C and X respectively, for the same ordering of the N involved
bones. To determine wX , we first evaluate w = pwA+qwB+rwC and consider
two cases. If w contains up to 4 non-zero weights, then wX = w. Otherwise,
since each vertex can be influenced by up to 4 bones, we keep the 4 greater
values of w, set the others to zero, and normalize the vector so that the sum of
the 4 values add to 1; the final result is returned as wX . We denote this weight
as weight of X via barycentric coordinates. Variations of this technique can be
applied in both modules to prioritize or neglect influences on vertices lying on
a specific side of the cutting plane. Different variations of the weight function
allows for less artifacts [28], depending on the model and the deformation
subsequent to the cutting/tearing.

Performance Running the cutting algorithm in the arm model (5037
faces, 3069 vertices) took for a simple cylinder model a total of 898ms: 42ms
for vertex separation, 757ms for re-triangulation of the 92 intersection points,
87ms to split faces in two meshes and 12ms to update the weights. To cut the
arm model, it took 4666ms as shown in Table 1, where most time (2205ms)
was spent on the evaluation and triangulation of the intersection points of the
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Table 1. Running times of the four main subroutines of the
cutting algorithm

Subroutine Time spent using
Euclidean tools

Time spent using GA tools

Subroutine 1 0, 036439578 + sec 0, 072434584 sec
Subroutine 2 2, 050984303 sec 2, 205727577 sec
Subroutine 3 0, 061544961 sec
Subroutine 4 2, 326937914 sec
Cutting time 4, 475906756 sec 4, 666645036 sec
In the 2nd column, point-versus-plane relative positions for subroutine
1 and segment-plane intersections for subroutine 2 were determined us-
ing only Euclidean subpredicates. In the 3rd column, the same oper-
ations were carried using Geometric Algebra equivalent subpredicates.
The subroutines 3 and 4 are independent of the model data repre-
sentation. Subroutines: (1) Check vertices locations with respect to the
cutting plane, (2) Detect which faces are intersected by the cutting
plane, evaluate the intersection points and triangulate them, (3) Evaluate
weights for the intersection points, (4) Split original model into submodels

cutting plane and the model. The offline pre-processing time of the model,
i.e., the time required to translate the model skin or animation data from
Euclidean coordinates or matrices respectively to multivector form is not
taken into account in the above measurements.

Applying the tearing algorithm to the arm model took 2437ms for the
final output, for 34 intersection points. Most of this time (2411ms) were
needed just to determine which two faces were intersected by the scalpel.
Tearing a simple cylinder model (758 faces, 634 vertices) took 362ms for
17 intersection points. Again, most time (331ms) was spend for the scalpel
intersection.

The drilling algorithm for the arm model takes on average 274ms for
a hole consisting of 17 intersection points on our arm model. For a hole of
the same diameter consisting of 20 intersection points, the algorithm requires
319ms to return the final outcome whereas, the running time grows to 595ms
when the diameter is increased from 2 to 3 and the intersection points be-
come 33. As a rule of thumb, there is an average running time of 16 − 18ms
per intersection point.

These running times, produced in a MacbookPro with a 2,6 GHz 6-
Core Intel Core i7 processor, can be greatly improved as our current unopti-
mized CPU-based Python implementation has to thoroughly search all faces
for cuts/tears. Multivector operations are performed by the Clifford python
package which, in some cases, allows some parallelization. However, since
python list comprehensions and functions of multiple types of inputs are in-
volved in our implementation, we could not fully parallelize our algorithm
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and python performed most operations in a single thread. A GPU implemen-
tation optimized for multivector operations would allow the comparison of
our proposed method with the current state-of-the-art methods, which how-
ever do not allow further deformation of the model. The running times of
our algorithms indicate that there is only a small percentage of performance
load added when using Geometric Algebra representation forms instead of
Euclidean ones to perform cuts/tears and drill holes.

5. Conclusions and Future Work

This work describes a novel way to perform model animation and deformation
as well as cutting, tearing and drilling under a single geometric framework
in Conformal Geometric Algebra. We focus towards a pure geometric-based
implementation that can be applied to rigged models even in low-spec VR
headsets and ultimately enable real-time operations such as the ones pre-
sented here. Our current results were obtained using python but, since our
goal is to have a full implementation in real-time virtual reality simulation,
we will inevitably have to use more suitable programming languages and
platforms such as C#/C++ and Unity/Unreal Engines. It is our intention to
use recently developed acceleration techniques [11] and parallel processing to
further optimize our algorithms and further decrease running times. We cur-
rently redesign parts of the algorithm to allow parallelization in all functions
where this is applicable. Finally, we intend to combine our modules in con-
junction with a physics engine to obtain a realistic opening effect, e.g., after
the user performs a tear, without the need to pre-record it and therefore lift
the limitation of only predefined, physics-based,plausible cuts,tears or drills.
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