
Deform, Cut and Tear a Skinned Model
Using Conformal Geometric Algebra

Manos Kamarianakis1,2(B) and George Papagiannakis1,2

1 University of Crete, Heraklion, Greece
m.kamarianakis@gmail.com,george.papagiannakis@gmail.com

2 ORamaVR, Heraklion, Greece
http://www.oramavr.com

Abstract. In this work, we present a novel, integrated rigged charac-
ter simulation framework in Conformal Geometric Algebra (CGA) that
supports, for the first time, real-time cuts and tears, before and/or after
the animation, while maintaining deformation topology. The purpose of
using CGA is to lift several restrictions posed by current state-of-the-art
character animation & deformation methods. Previous implementations
originally required weighted matrices to perform deformations, whereas,
in the current state-of-the-art, dual-quaternions handle both rotations
and translations, but cannot handle dilations. CGA is a suitable exten-
sion of dual-quaternion algebra that amends these two major previous
shortcomings: the need to constantly transmute between matrices and
dual-quaternions as well as the inability to properly dilate a model dur-
ing animation. Our CGA algorithm also provides easy interpolation and
application of all deformations in each intermediate steps, all within the
same geometric framework. Furthermore we also present two novel algo-
rithms that enable cutting and tearing of the input rigged, animated
model, while the output model can be further re-deformed. These inter-
active, real-time cut and tear operations can enable a new suite of appli-
cations, especially under the scope of a medical surgical simulation.

Keywords: Conformal Geometric Algebra (CGA) · Skinning ·
Interpolation · Cutting algorithm · Tearing algorithm · Keyframe
generation

1 Introduction

Skinned model animation has become an increasingly important research area
of Computer Graphics, especially due to the huge technological advancements
in the field of Virtual Reality and computer games. The original animation
techniques, based on matrices [1] for translation, rotation and dilation, are still
applied as the latest GPUs allow for fast parallel matrix operations. The fact
that the interpolation result of two rotation matrices does not result in a rota-
tion matrix, forced the use of quaternions as an intermediate step. The extra
transmutation steps from matrix to quaternions and vice versa, adds some extra
c⃝ Springer Nature Switzerland AG 2020
N. Magnenat-Thalmann et al. (Eds.): CGI 2020, LNCS 12221, pp. 434–446, 2020.
https://doi.org/10.1007/978-3-030-61864-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61864-3_37&domain=pdf
http://orcid.org/0000-0001-6577-0354
http://orcid.org/0000-0002-2977-9850
https://doi.org/10.1007/978-3-030-61864-3_37


Deform, Cut and Tear a Skinned Model Using Conformal Geometric Algebra 435

performance burden to the animation but yields better results, solving problems
such as the gimbal lock.

Nowadays, the state-of-the-art methods for skinned model animation use
dual-quaternions, an algebraic extension of quaternions [13]. Dual quaternions
handle both rotation and translation, while the dilation effect is still applied
via matrices [12]. It is also noteworthy to mention that quaternions and dual
quaternions enable blending techniques that resolve artifacts produced by simple
linear blending, while further post-processing can be used to further minimize
them [14].

Advances in Virtual Reality technology and the mass production of cheap
VR headsets increased the demand of real-time simulation applications for both
personal and industrial purposes. The research areas that sprout from these
advancements, such as Virtual Surgery Simulation, require more complex model
deformation such as cutting, tearing or drilling. Current algorithms [6,20] han-
dle such deformations using tetrahedral mesh representation of the model, which
demands a heavy pre-processing to be performed. Since originally introduced,
cutting methods have been upgraded and polished to allow real-time results,
using mostly finite element methods and clever optimization [4,7,15]. To make
the final results even more realistic, physics engines utilizing position-based
dynamics are used to simulate soft-tissue cuts at the expense of performance
[2,3,5].

Our approach utilizes the Conformal Geometric Algebra (CGA) framework
to perform both model animation and cutting. CGA is an algebraic extension
of dual-quaternions, where all entities such as vertices, spheres, planes as well
as rotations, translations and dilation are uniformly expressed as multivectors
[8,11,19]. The usage of multivectors allows model animation without the need to
constantly transmute between matrices and (dual) quaternions, enabling dilation
to be properly applied with translation [17,18]. Furthermore, the interpolation of
two multivectors of the same type correctly produce the expected intermediate
result [9], which makes creation of keyframes trivial to implement. Finally, usage
of the proposed framework demands a single representation type for all data and
results, which is the current trend in computer graphics [16].

Our Contribution: The novelty of our work initially involves the complete
implementation of rigged model animation in terms of CGA, extending the
work of Papaefthymiou et al. [17] with full python-based implementation that
enables keyframe generation on-the-fly. The original animation equation involv-
ing matrices is translated to its equivalent multivector form (see Sect. 3.1) and all
information required to apply the formula (vertices, animation data) is obtained
from the model and translated to multivector. This enables us to have future
animation models in CGA representation only, which, in combination with an
optimized GPU multivector implementation, would produce faster results under
a single framework. A novelty of our work is the cutting and tearing algorithm
that is being applied on top of the previous framework; given the input ani-
mated model, we perform real-time cuts and tears on the skin and then further
re-deform the output model. The subpredicates used in these two algorithms



436 M. Kamarianakis and G. Papagiannakis

utilize the multivector form of their input, so they can be implemented in a
CGA-only framework. Their design was made in such a way that little to no
pre-processing of the input model is required while allowing a future combina-
tion with a physics engine. Furthermore, using our method, we can generate
our own keyframes in real-time instead of just interpolating between pre-defined
ones. Our all-in-one cpu python implementation is able to process an existing
animation model (provided in .dae or .fbx format) and translate the existing
animation in the desired CGA form while further tweaks or deformations are
available in a simple way to perform. Such an implementation is optimal as far
as rapid prototyping, teaching and future connection to deep learning is con-
cerned. It also constitutes the base for interactive cutting and tearing presented
in Sect. 3.2.

2 State of the Art

The current state of the art regarding skeletal model animation is based on the
representation of bones animation via transformation matrices and quaternions
or dual-quaternions. Such an implementation allows for efficient and robust inter-
polation methods between keyframes; linear interpolation of the quaternions is
done in a naive and easy to perceive way. A major drawback of such an imple-
mentation is that a dilation method can not be applied as a scaling matrix always
refers to the origin and not the parent bone [17].

To be more precise regarding the mechanics of the animation process, in the
case of a simple animated model, every bone bi amounts to an offset matrix Oi

and an original transformation matrix ti. The skin of the model is imported as
a list of vertices v and a list of faces f . A bone hierarchy is also provided where
{ti} are stored along with information regarding the animation of each joint.
This information, usually referred to as TRS data, is provided in the form of a
quaternion, a translation vector and a scaling vector that represent respectively
the rotation, displacement and scaling of the joint with respect to the parent
joint for each keyframe (see Sect. 2.1).

In order to determine the position of the skin vertices at any given time k
and therefore render the scene by triangulating them using the faces list, we
follow the steps described below. Initially, a matrix G is evaluated as the inverse
of the transformation matrix that corresponds to the root node. Afterwards, we
evaluate the global transformation matrix for every bone bi at time k and denote
it as Ti,k. To evaluate all Ti,k, we recursively evaluate the matrix product Tj,kti,k
where bj is the parent bone of bi, given that Tr,k is the identity matrix (of size 4),
where br denotes the root bone. The matrix ti,k is a transformation matrix equal
to ti if there is no animation in the model; in this case, our implementation allows
to generate the keyframes ourselves in real-time. Otherwise, ti,k is evaluated as

ti,k = TRi,kMRi,kSi,k (1)

where TRi,k,MRi,k, Si,k are the interpolated matrices that correspond to the
translation, rotation and scaling of the bone bi at a given time k.



Deform, Cut and Tear a Skinned Model Using Conformal Geometric Algebra 437

After evaluating the matrices {Ti,k} for all bones {bi}, we can evaluate the
global position of all vertices at time k, using the animation equation:

Vk[m] =
∑

n∈Im

wm,nGTn,kOnv[m] (2)

where

– Vk[m] denotes the skin vertex of index m (in homogeneous coordinates) at
the animation time k,

– Im contains up to four indices of bones that affect the vertex v[m],
– wm,n denotes the “weight”, i.e., the amount of influence of the bone bn on the

vertex v[m],
– On denotes the offset matrix corresponding to bone bn, with respect to the
root bone,

– G denotes the inverse of the transformation matrix that corresponds to the
root bone (usually equals the identity matrix) and

– Tn,k denotes the deformation of the bone bn at animation time k, with respect
to the root bone.

2.1 State-of-the-Art Representation

The modern way to represent the TRS data of a keyframe is to use matrices for
the translation and dilation data as well as quaternions for the rotation data.
Let {TRi, Ri, Si}, denote such data at keyframe i ∈ {1, 2}, where:

– TRi =

⎡

⎢⎢⎣

1 0 0 xi

0 1 0 yi
0 0 1 zi
0 0 0 1

⎤

⎥⎥⎦ and Si =

⎡

⎢⎢⎣

sxi 0 0 0
0 syi 0 0
0 0 szi 0
0 0 0 1

⎤

⎥⎥⎦ represent the translation by

(xi, yi, zi) and the scale by (sxi, syi, szi) respectively and
– Ri is a quaternion representing the rotation.

Before quaternions, euler andgles and the derived rotation matrices were
used to represent rotation data. However the usage of such matrices induced a
great problem: a weighted average of such matrices does not correspond to a
rotation matrix and therefore interpolating between two states would require
interpolating the euler angles and re-generate the corresponding matrix. This in
turn would sometimes lead to a gimbal lock or to ‘candy-wrapper’ artifacts such
as the ones presented in [12].

The usage of quaternions allowed for easier interpolation techniques while
eradicating such problems. Nevertheless, a transformation of the interpolated
quaternion to corresponding rotation matrix was introduced since the GPU cur-
rently handles only matrix multiplications in a sufficient way for skinning rea-
sons. Therefore, the interpolation between the two keyframes mentioned above
follows the following pattern:

1. the matrices TRa = (1−a)TR1+aTR2 and Sa = (1−a)S1+aS2 are evaluated
for a given a ∈ [0, 1],



438 M. Kamarianakis and G. Papagiannakis

2. the quaternion Ra = (1 − a)R1 + aR2 is determined and finally,
3. the rotation matrix MRa that corresponds to Ra is calculated.

The interpolated data TRa,MRa and Sa are then imported to the GPU in
order to determine the intermediate frame, based on the Eq. (2).

Using the method proposed in this paper, all data are represented in multi-
vector form. A major implication of this change is that the interpolation between
two states is done in a more clear and uniform way as presented in Sect. 3. This
also makes the need to constantly transform a quaternion to a rotation matrix
redundant, although we are now obliged to perform multivector additions and
multiplications as well as down project points from R4,1 to R3 to parse them
to the GPU. However, since all our data and intermediate results are in the
same multivector form, we could (ideally) program the GPU to implement such
operations and therefore greatly improve performance.

Fig. 1. Skinning via multivectors versus skinning via dual quaternions. The origi-
nal model is deformed using multivectors and depicted in magenta wireframe, super-
imposed with the color-graded result (based on the z coordinate of each vertex) of
the quaternion method for the same deformation. It is qualitatively verified that lin-
ear blending of multivectors produces similar results with the current state-of-the-art
method. Evaluating the vector differences of all vertices for the two methods, we have
evaluated the approximation error assuming the quaternion method to be the correct,
using the infinity (ℓ∞) norm. (a) Applying rotation on a bone, approximation error
0.3%. (b) Applying dilation on a bone, approximation error 0.00035%. (c) Applying
translation, approximation error 1%. The model used contains 1261 vertices and 1118
faces.



Deform, Cut and Tear a Skinned Model Using Conformal Geometric Algebra 439

Fig. 2. Cutting module intermediate steps. (a) The original animated model. (b) The
model where the (red) intersection points of the cutting plane and the mesh are calcu-
lated and re-triangulated. (c) The model after the cut. (d) The model is deformed by
a rotation (axis = (0, 1, 1), 0.7 rad), a translation (vector = (13, 0, 0)) and a dilation
(factor = 0.5) at joint 1 (elbow), as well as another rotation (axis = (0, 1, 1), 0.3 rad)
at joint 2 (wrist). Note that minimal artifacts occur in the final result. The vertices in
(d) are colored depending on the influence of joint 1 which is mostly deformed. The
vertices in (a)–(c) are colored based on their z coordinate. (Color figure online)

3 Our Algorithms and Results

3.1 Multivector Form of the Animation Equation

The animation Eq. (2), core of the animation algorithm, yields fast results (espe-
cially when combined with a GPU implementation) but denies us a robust way
to dilate with respect to a bone. Our motivation is to extend and apply the
animation equation for multivector input as proposed in [17].

To be more specific regarding our method, we propose the replacement of
all matrices appearing in (2) with multivectors for animation purposes. The
transformation matrix of ti of each bone bi as well as all information regard-
ing translation and rotation for each keyframe can be easily converted to mul-
tivectors [8,11]. Consequently, we can evaluate the multivector Mi,k which is
equivalent to the matrix Ti,k by following the same procedure of determining
the latter (described in Sect. 2) while substituting all involved matrices with the
corresponding multivectors.

Note that various techniques can be used to interpolate between two
keyframes to obtain Mi,k; for existing keyframes logarithmic blending is pre-
ferred [9,12], whereas for keyframe generation we use linear blending. In both
scenarios, the intermediate results are multivectors of the correct type.

Furthermore, each offset matrix On and each skin vertex v[m] is translated
to their CGA form Bn and c[m] respectively. Finally, G matrix is normalized to
identity and is omitted in the final equation.



440 M. Kamarianakis and G. Papagiannakis

Our final task is to translate in CGA terms the matrix product Tn,kOnv[m],
where apparently each multiplication sequentially applies a deformation to ver-
tex v[m]. To apply the respective deformations, encapsulated by Mn,k and
Bn, to CGA vertex c[m], we have to evaluate the sandwich geometric product
(Mn,kBn)c[m](Mn,kBn)⋆ where V ⋆ denotes the inverse multivector of V (see
[11,13] for details).

Summarizing, if the multivector form of the vertex Vk[m], which corresponds
to the final position of the m-th vertex at animation time k, is denoted by Ck[m],
then the multivector animation equation becomes

Ck[m] =
∑

n∈Im

wm,n(Mn,kBn)c[m](Mn,kBn)⋆ (3)

After the evaluation of Ck[m] for all m, we can down-project all these conformal
points to the respective euclidean ones in order to represent/visualize them and
obtain the final result of the keyframe at time k.

The replacement of matrices with multivectors enables the introduction of
dilations in a simple way. The multivector Mi,k that represents a rotation and
translation with respect to the parent bone of bi can be replaced with Mi,kDi,k

where Di,k is the corresponding dilator and the operation between them is the
geometric product. The dilator corresponds to a scale factor with respect to
the parent bone, information that could not be easily interpreted via matrices.
However, since the application of a motor and/or a dilator to a vertex is a
sandwich operation, such a dilation becomes possible when using multivectors.

A comparison between the results of our proposed method and the current
state-of-the-art is shown in Fig. 1, where we successfully apply dilation to differ-
ent bones and obtain similar results. Rotations, dilations and translations are
obtained in our method using multivectors only, under a single framework with
simpler notation/implementation; linear blending is used to interpolate between
keyframes.

3.2 Cutting and Tearing Algorithms

A novelty we present in this paper is the cutting and tearing algorithms on
skinned triangulated models. As the name suggests, the first module enables the
user to make a planar cut of the model whereas the latter is used to perform
smaller intersections on the skin. In the following sections, we provide a detailed
presentation of the algorithms involved as well as certain implementation details.

Cutting Algorithm. Cutting a skinned model is implemented in current bibli-
ography in many forms [6]. The most common technique is via the usage of tetra-
hedral meshes which require a heavy preprocessing on the model and currently
do not enable further animation of the model. Our work includes an algorithm
to planar cut a model (or a part of it) where the final mesh is deformable, as we
implemented a function to calculate weights for all additional vertices that did
not originally exist (see Fig. 2). Most of the subpredicates used in the cutting



Deform, Cut and Tear a Skinned Model Using Conformal Geometric Algebra 441

algorithm are implemented in terms of conformal geometry and therefore can be
used even if the model is provided in multivector form.

Our proposed planar cut implementation is summarized as Algorithm 1. A
description of how we tackle the weight evaluation in step 4 is found in Sect. 3.3.
Our algorithm does not require tetrahedral meshed models and requires mini-
mum to none preprocessing. It is GA-ready and the low number of operations it
demands make it suitable for VR implementations.

Fig. 3. Tearing module intermediate steps. (a) The original animated model and
the scalpel’s position at two consecutive time steps. (b) The plane defined by the
scalpels (depicted as a red tringle) intersects the skin in the magenta points. (c) The
intermediate points are used in the re-triangulation, and are «pushed»away from the
cutting plane to form an open tear.

Tearing Algorithm. The purpose of this module is to enable partial cuts on
the skinned model, in contrast with the cutting module where the cut is, in a
sense, complete. The importance of this module derives from the fact that most

Algorithm 1. Cutting Algorithm
Input: Triangulated Mesh M = (v, f) (f is the face list), and a plane Π.
Output: Two meshes M1 = (v1, f1) and M2 = (v2, f2), result of M getting cut by Π
1: Evaluate (using GA) and order the intersection points of Π with each face of M .
2: Evaluate the weights and bone indices that influence these points.
3: Re-triangulate the faces that are cut using the intersection points.
4: Separate faces in f1 and f2, depending on which side of the plane they lie.
5: From f1 and f2, construct M1 and M2.



442 M. Kamarianakis and G. Papagiannakis

of the surgical incisions are partial cuts and therefore they are worth replicating
in the context of a virtual surgery. Towards that direction, our work involves an
algorithm that both tears a skinned model and also enables animation of the
final mesh (see Figs. 3 and 4).

To understand the philosophy behind the design of the tearing algorithm
that is described below, one must comprehend the differences between cutting
and tearing. In tearing, the movement of a scalpel defines the tear rather than
a single plane. To capture such a tear in geometric terms, we have to take into
consideration the location of the scalpel in either a continuous way (e.g. record
the trail of both endpoints of the scalpel in terms of time) or a discrete way
(e.g. know the position of the scalpel at certain times ti). For VR purposes, the
latter way is preferred as it yields results with better fps, since input is hard
to be monitored and logged continuously in a naive way. For these reasons, our
implementation requires the scalpel position to be known for certain ti.

The proposed tearing algorithm is summarized in Algorithm 2. A description
of how we tackle the weight evaluation in step 4 is found in Sect. 3.3.

Algorithm 2. Tearing Algorithm
Input: Triangulated Mesh M = (v, f), and scalpel position at time steps ti and ti+1

Require: Scalpel properly intersects M at these time steps
Output: The mesh Mt = (vt, ft) resulting from M getting torn by the scalpel
1: Determine the intersection points Si and Si+1 of M with the scalpel at time step

ti and ti+1 respectively.
2: Determine the plane Π, containing Si and the endpoints of scalpel at time ti+1.

Small time steps guarantee that Π is well-defined.
3: Evaluate the intersection points Qj of Π and M , s.t. the points Si,Q0,Q1,. . .,Qm,

Si+1 appear in this order on Π when traversing the skin from Si to Si+1.
4: Assign weights to points Si, Si+1 and all Qj .
5: Re-triangulate the torn mesh, duplicating Qj vertices.
6: Move the two copies of Qj away from each other to create a visible tear (optional).

Our major assumption is that all intermediate intersection points lie on this
plane, which is equivalent to the assume that the tearing curve is smooth, given
that ti and ti+1 are close enough. In our implementation, during step 6, the
intermediate torn points are moved parallel to the direction of the normal of the
plane Π and away from it, to replicate the opening of a cut human tissue.

3.3 Implementation Details, Performance and Video Results

The main framework used for skinning and animation with the use of multi-
vectors is Python’s PyAssimp1 and Clifford2 package for the evaluation of the
vertices and the Meshplot package for rendering the model. The use of Python
1 PyAssimp Homepage: https://pypi.org/project/pyassimp/.
2 Clifford Homepage: https://clifford.readthedocs.io/.

https://pypi.org/project/pyassimp/
https://clifford.readthedocs.io/


Deform, Cut and Tear a Skinned Model Using Conformal Geometric Algebra 443

Fig. 4. Deformation of a torn model. (a) The original model after applying the tear.
(b) Two rotations are applied to the torn model, one at elbow joint around y-axis by
−1 rad, and another at wrist joint around y-axis by 1 rad. (c) A dilation of scale 1.5 is
applied to the torn model, at elbow joint. (d) A translation is applied to the torn model
at elbow joint with translation vector (18, 0, 0). In all cases, minor artifacts only arise,
despite the great magnitude of the applied deformations. In (b), (c) and (d), vertices
are colored depending on the influence of elbow joint which is mostly deformed. In (a),
vertices are colored based on their z coordinate.

language was preferred for a more user and presentation-friendly experience; for
a more robust and efficient implementation C++ would be advised.

An instance of a class called v_w is used to store for each vertex a list of
up to 4 bones that influence it along with the corresponding influence factors. The
node tree is then traversed and all information regarding rotation, translation
and dilation are translated to multivectors [8,11] and also stored in the instance
for convenience. In order to evaluate the final position of the vertices, all that
is left is to evaluate the sum in Eq. (3) for all vertices and down project it to
R3, for each vertex. There are two possible ways of achieving this task. The first
way is to evaluate the sum and then down project the final result to obtain each
vertex in Euclidean form. The second way is to down project each term and
then add them to get the final result. Although not obvious, the second method
yields faster results since the addition of 4 multivectors (32-dimensional arrays)
and one down-projection is slower than down-projecting (up to) 4 multivectors
and adding 4 euclidean vectors of dimension 3.

A final implementation detail regards the weight evaluation for newly added
vertices in the cutting and tearing modules. In the former module, such vertices
necessarily lie on an edge of the original mesh, whose endpoints both lie on
different sides of the cutting plane. Another method is the one used in the
tearing module where the intersection point can also lie inside a face. Assuming
the point X lie somewhere on the face ABC, we can explicitly write OX =
pOA + qOB + rOC for some a, b, c ∈ [0, 1] such that p + q + r = 1. The tuple
(p, q, r) is called the barycentric coordinate of X with respect to the triangle



444 M. Kamarianakis and G. Papagiannakis

ABC. Each of the vertices A,B,C are (usually) influenced by up to 4 bones, so
let us consider that they are all influenced by a set of N(≤ 12) vertices, where the
bones beside the original 4 have weight 0. Let wA, wB , wC , wX denote the vectors
containing the N weights that correspond to vertices A,B,C and X respectively,
for the same ordering of theN involved bones. To determine wX , we first evaluate
w = pwA + qwB + rwC and consider two cases. If w contains up to 4 non-zero
weights, then wX = w. Otherwise, since each vertex can be influenced by up to 4
bones, we keep the 4 greater values of w, set the others to zero, and normalize the
vector so that the sum of the 4 values add to 1; the final result is returned as wX .
We denote this weight as weight of X via barycentric coordinates. Variations of
this technique can be applied in both modules to prioritize or neglect influences
on vertices lying on a specific side of the cutting plane. Different variations of
the weight function allows for less artifacts, depending on the model and the
deformation subsequent to the cutting/tearing.

Performance: Running the Tearing algorithm in the arm model (5037 faces,
3069 vertices) it took 2437ms for the final output, for 34 intersection points.
Most of this time (2411ms) were needed just to determine which two faces
were intersected by the scalpel. Tearing the cylinders model (758 faces, 634
vertices) took 362ms for 17 intersection points. Again, most time (331ms) was
spend for the scalpel intersection. For the Cutting Algorithm, it took for the
cylinders model a total of 898ms: 42ms for vertex separation, 757ms for re-
triangulation of the 92 intersection points, 87ms to split faces in two meshes
and 12ms to update the weights. To cut the arm model, it took 22805ms, where
most of them (22547ms) were spent to re-triangulate the 90 intersection points.
These running times can be greatly improved as our current unoptimized CPU-
based Python implementation has to thoroughly search all faces for cuts/tears.
A GPU implementation optimized for multivector operations would allows to the
comparison of our proposed method with the current state-of-the-art methods.

Video: A video with our results can be found at https://bit.ly/3fsYkdZ.

4 Conclusions and Future Work

This work describes a way to perform model animation and deformation as well
as cutting and tearing under a single geometric framework called Conformal
Geometric Algebra. Our results were obtained using python but since our goal
is to have a full implementation in real-time virtual reality simulation we will
inevitably have to embed in C++ and ultimately Unity/Unreal Engine code. We
intend to combine the tearing module in conjunction with a physics engine to
obtain a realistic opening effect. A drilling module is in progress that will allow
the user to make holes on the skinned model; such a task is useful especially
for VR simulations of dental surgeries. Finally, it is our intention to minimize
running times to real-time implementation levels via optimization and the use
of recently developed acceleration techniques [10].

https://bit.ly/3fsYkdZ


Deform, Cut and Tear a Skinned Model Using Conformal Geometric Algebra 445

References

1. Alexa, M.: Linear combination of transformations. ACM Trans. Graph. 21(3),
380–387 (2002)

2. Bender, J., Müller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on
position-based simulation methods in computer graphics. Comput. Graph. Forum
33(6), 228–251 (2014)

3. Berndt, I.U., Torchelsen, R.P., Maciel, A.: Efficient surgical cutting with position-
based dynamics. IEEE Comput. Graphics Appl. 37(3), 24–31 (2017)

4. Bielser, D., Glardon, P., Teschner, M., Gross, M.: A state machine for real-time
cutting of tetrahedral meshes. In: 11th Pacific Conference on Computer Graphics
and Applications, pp. 377–386. IEEE Computer Society (2004)

5. Bielser, D., Maiwald, V.A., Gross, M.H.: Interactive cuts through 3-dimensional
soft tissue. Comput. Graph. Forum 18(3), 31–38 (1999)

6. Bruyns, C.D., Senger, S., Menon, A., Montgomery, K., Wildermuth, S., Boyle,
R.: A survey of interactive mesh-cutting techniques and a new method for imple-
menting generalized interactive mesh cutting using virtualtools ‡. J. Vis. Comput.
Animation 13(1), 21–42 (2002)

7. Bruyns, C.D., Senger, S.: Interactive cutting of 3D surface meshes. Comput. Graph.
25(4), 635–642 (2001)

8. Dorst, L., Fontijne, D., Mann, S.: Geometric algebra for computer science - an
object-oriented approach to geometry. The Morgan Kaufmann series in computer
graphics (2007)

9. Hadfield, H., Lasenby, J.: Direct Linear Interpolation of Geometric Objects in
Conformal Geometric Algebra. Advances in Applied Clifford Algebras (2019)

10. Hadfield, H., Hildenbrand, D., Arsenovic, A.: Gajit: symbolic optimisation and
JIT compilation of geometric algebra in python with GAALOP and numba. In:
Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI
2019. LNCS, vol. 11542, pp. 499–510. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22514-8_50

11. Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-31794-1

12. Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Geometric skinning with approxi-
mate dual quaternion blending. dl.acm.org 27(4) (2008)

13. Kenwright, B.: A beginners guide to dual-quaternions: What they are, how they
work, and how to use them for 3D character hierarchies. In: WSCG 2012 - Con-
ference Proceedings, pp. 1–10. Newcastle University, United Kingdom, December
2012

14. Kim, Y.B., Han, J.H.: Bulging-free dual quaternion skinning. In: Computer Ani-
mation and Virtual Worlds, pp. 321–329. Korea University, Seoul, South Korea,
John Wiley & Sons, Ltd., January 2014

15. Mor, A.B., Kanade, T.: Modifying soft tissue models: progressive cutting with
minimal new element creation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.)
MICCAI 2000. LNCS, vol. 1935, pp. 598–607. Springer, Heidelberg (2000). https://
doi.org/10.1007/978-3-540-40899-4_61

16. Müller, M., Chentanez, N., Macklin, M.: Simulating visual geometry. In: Proceed-
ings - Motion in Games 2016: 9th International Conference on Motion in Games,
MIG 2016, pp. 31–38 (2016)

17. Papaefthymiou, M., Hildenbrand, D., Papagiannakis, G.: An inclusive Conformal
Geometric Algebra GPU animation interpolation and deformation algorithm. Vis.
Comput. 32(6–8), 751–759 (2016)

https://doi.org/10.1007/978-3-030-22514-8_50
https://doi.org/10.1007/978-3-030-22514-8_50
https://doi.org/10.1007/978-3-642-31794-1
https://doi.org/10.1007/978-3-540-40899-4_61
https://doi.org/10.1007/978-3-540-40899-4_61


446 M. Kamarianakis and G. Papagiannakis

18. Papagiannakis, G.: Geometric algebra rotors for skinned character animation
blending. In: SIGGRAPH Asia 2013 Technical Briefs, SA 2013, December 2013

19. Wareham, R., Cameron, J., Lasenby, J.: Applications of conformal geometric alge-
bra in computer vision and graphics. IWMM/GIAE 3519(1), 329–349 (2004)

20. Wu, J., Westermann, R., Dick, C.: A survey of physically based simulation of cuts
in deformable bodies. Comput. Graph. Forum 34(6), 161–187 (2015)


	Preface
	Organization
	Contents
	CGI’20 Full Papers
	Comparing Physical and Immersive VR Prototypes for Evaluation of an Industrial System User Interface
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Annelida System Overview
	3.2 Methods and Apparatus
	3.3 Experiment Design

	4 Results
	5 Research Questions
	6 Conclusion
	References

	Gaze-Contingent Rendering in Virtual Reality
	1 Introduction
	1.1 Significance
	1.2 Article Structure

	2 Related Work
	2.1 Image-Based Viewpoint Prediction
	2.2 The Relationship Between Eye and Head Movements
	2.3 Foveated Rendering

	3 Content and Methods
	3.1 Hardware System
	3.2 Viewpoint Prediction
	3.3 Foveated Rendering

	4 Experiment Results and Analysis
	4.1 Test Methods and Evaluation Standards
	4.2 Viewpoint Prediction
	4.3 Rendering Effect
	4.4 Rendering Efficiency

	5 Conclusion
	References

	Hierarchical Rendering System Based on Viewpoint Prediction in Virtual Reality
	1 Introduction
	1.1 Significance
	1.2 Article Structure

	2 Related Works
	2.1 Visual Saliency Prediction
	2.2 Eye-Head Coordination
	2.3 Model Simplification Algorithm and Hierarchical Rendering Method

	3 Content and Methods
	3.1 Viewpoint Prediction
	3.2 Hierarchical Rendering

	4 Experiment Results and Analysis
	5 Conclusion
	References

	Reinforcement Learning-Based Redirection Controller for Efficient Redirected Walking in Virtual Maze Environment
	1 Introduction
	2 Algorithms for Redirected Walking
	3 Reinforcement Learning-Based Redirection Controller (RLRC)
	3.1 Problem Formulation
	3.2 Reinforcement Learning Algorithm
	3.3 Simulator for Redirected Walking

	4 Experimental Evaluation
	4.1 Simulator Test
	4.2 User Test

	5 Conclusions
	References

	Locality-Aware Skinning Decomposition Using Model-Dependent Mesh Clustering
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Preliminaries

	3 Algorithm
	3.1 Model-Dependent Mesh Clustering
	3.2 Locality-Aware Weight Optimization
	3.3 Frame-Reduction

	4 Results
	4.1 Comparison with Baseline Method
	4.2 Validation of Locality-Aware Optimization
	4.3 Validation of Frame-Reduction
	4.4 Validation Using Practical Asset

	5 Discussion
	References

	A New Volume-Based Convexity Measure for 3D Shapes
	1 Introduction
	2 Our Volume-Based Convexity Measure
	3 Proof of the New Measure
	4 Algorithm Implementation
	5 Experimental Results
	5.1 Quantitative Evaluation
	5.2 3D Shape Retrieval
	5.3 Computational Efficiency

	6 Limitations
	7 Conclusions
	References

	Deep Inverse Rendering for Practical Object Appearance Scan with Uncalibrated Illumination
	1 Introduction
	2 Related Work
	3 Method
	3.1 Preliminary
	3.2 Decouple Shape and Surface Material
	3.3 Reflectance Recovery Under Uncalibrated Illumination
	3.4 Key Frames Selection

	4 Results
	4.1 Known Lighting
	4.2 Reflectance Recovery Under Uncalibrated Illumination
	4.3 Real Acquisition Results

	5 Conclusions and Future Work
	References

	Application of the Transfer Matrix Method to Anti-reflective Coating Rendering
	1 Introduction
	2 Previous Work
	2.1 Optics
	2.2 Computer Graphics

	3 Theoretical Model
	3.1 Hypotheses and Notations
	3.2 Background
	3.3 One Layer Transfer Matrix
	3.4 Total Transfer Matrix

	4 Results
	4.1 Single vs Multiple Layers
	4.2 Spectral vs RGB
	4.3 Look-Up Table Driven Rendering

	5 Conclusion and Future Works
	References

	Dynamic Shadow Rendering with Shadow Volume Optimization
	1 Introduction
	2 Related Work
	3 Hash-Culling Approach
	4 Implementation
	5 Results and Discussion
	6 Conclusion
	References

	Adaptive Illumination Sampling for Direct Volume Rendering
	1 Introduction
	2 Related Work
	3 Adaptive Volumetric Illumination Sampling
	3.1 Volumetric Lighting Model
	3.2 Adaptive Illumination Sampling
	3.3 Voxel Cone Traced Ambient Occlusion
	3.4 Image-Based Lighting

	4 Results
	5 Discussion
	6 Conclusion and Future Work
	References

	Musical Brush: Exploring Creativity Through an AR-Based Tool for Sketching Music and Drawings
	1 Introduction
	2 Related Workd
	3 Design Rational
	4 Implementation
	4.1 Feature Extraction
	4.2 Mapping
	4.3 Sound Synthesis
	4.4 Composition

	5 Evaluation
	5.1 Compared Versions
	5.2 Questionnaires
	5.3 Protocol

	6 Results
	6.1 Population
	6.2 Resulting Data
	6.3 Discussion

	7 Conclusion and Future Works
	References

	MR Environments Constructed for a Large Indoor Physical Space
	1 Introduction
	2 Related Work
	2.1 VR/AR/MR Apps Design
	2.2 Accelerate Rendering in AR/MR

	3 System Design and Implementation
	3.1 Constructing MR Environments
	3.2 Optimize the Layouts of MR Environments
	3.3 Accelerate Rendering Based on the Optimized Deployment
	3.4 Correct Deviation Using Spatial Anchors

	4 Experiments
	5 Conclusion
	References

	FIOU Tracker: An Improved Algorithm of IOU Tracker in Video with a Lot of Background Inferences
	1 Introduction
	2 Related Work
	2.1 Object Detection Models in MOT Models
	2.2 Recent MOT Work

	3 Proposal Method
	3.1 IOU Tracker
	3.2 VIOU Tracker
	3.3 FIOU Tracker

	4 Experimental Results
	4.1 Dataset Introduction
	4.2 Implementation Detail
	4.3 Tracking Evaluation Metric
	4.4 Experiment Result

	5 Conclusion
	References

	An Approach of Short Advertising Video Generation Using Mobile Phone Assisted by Robotic Arm
	1 Introduction
	2 Related Work
	2.1 Computational Modeling of Cinematography
	2.2 Robotics in Video Shooting

	3 Method
	3.1 Overview
	3.2 Storyboard Design
	3.3 Robotic Arm Shooting

	4 Experiments
	4.1 Implementation
	4.2 Procedure
	4.3 Results
	4.4 Expert Evaluation

	5 Conclusions and Future Work
	References

	``Forget'' the Forget Gate: Estimating Anomalies in Videos Using Self-contained Long Short-Term Memory Networks
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Optical Flow
	3.3 Proposed LSTM Architecture

	4 Experiments
	4.1 Datasets and Settings
	4.2 Comparison with State-of-the-Art Methods

	5 Conclusion
	References

	An Improved Image Stitching Method Based on Seed Region Growth and Poisson Fusion
	1 Introduction
	2 Related Work
	2.1 Image Registration
	2.2 Image Fusion

	3 Our Image Stitching Method
	3.1 Image Registration
	3.2 Poisson Fusion
	3.3 Improved Seed Region Growth Method
	3.4 Poisson Fusion with Improved Seed Region Growth Method

	4 Experimental Results and Comparative Analysis
	5 Conclusion
	References

	Illumination Harmonization with Gray Mean Scale
	1 Introduction
	2 Related Work
	2.1 Previous Methods
	2.2 Previous DataSets

	3 Our DataSet
	3.1 Capture the Roughly-Aligned Target Image
	3.2 Compute the Ground-Truth Composite

	4 Illumination Harmonization
	4.1 The Reflection Model
	4.2 Gray Mean Scale

	5 Experiments
	5.1 Evaluations with Our Dataset
	5.2 Comparison with Previous Datasets

	6 Conclusion
	References

	An Unsupervised Approach for 3D Face Reconstruction from a Single Depth Image
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Depth Image Embedding
	3.2 Self-supervision

	4 Experiments
	4.1 Results

	5 Conclusion
	References

	Fusing IMU Data into SfM for Image-Based 3D Reconstruction
	1 Introduction
	2 Related Work
	3 Estimation of Rotation Matrices
	4 IMU-aided Reconstruction
	5 Experimental Evaluations
	6 Concluding Remarks
	References

	Physics-Guided Sound Synthesis for Rotating Blades
	1 Introduction
	2 Method Overview
	3 Physics-Guided Sound Synthesis
	3.1 Optimized Solution
	3.2 Delay-Time Algorithm

	4 Sound Enrichment
	5 Results and Discussions
	5.1 Rotating Blade Scenarios
	5.2 Comparison with the State-of-the-Art Method and the Real Recording
	5.3 User Study

	6 Conclusion and Future Works
	References

	Elimination of Incorrect Depth Points for Depth Completion
	1 Introduction
	2 Related Work
	2.1 Depth Errors Removal
	2.2 Depth Denoising
	2.3 Depth Completion

	3 The Proposed Method
	3.1 Potential Incorrect Depth Region Localization
	3.2 Identification of Incorrect Depth Points
	3.3 Three-Step Elimination

	4 Results
	4.1 Limitations

	5 Conclusion
	References

	Pose Transfer of 2D Human Cartoon Characters
	1 Introduction
	2 Pose Transfer
	2.1 Two-Layer Representation of the Character
	2.2 Skeleton Extraction
	2.3 Skeleton Matching
	2.4 Skeleton Skinning-Based Deformation
	2.5 Geometric Constraints

	3 Graph Reconstruction
	4 Implementation
	5 Results and Comparison
	5.1 Comparison with Other Works
	5.2 More Results

	6 Conclusion
	References

	Broad-Classifier for Remote Sensing Scene Classification with Spatial and Channel-Wise Attention
	1 Introduction
	2 Related Work
	2.1 Remote Sensing Scene Classification
	2.2 Attention Mechanism

	3 Method
	3.1 Spatial and Channel-Wise Attention Module
	3.2 Broad-Classifier

	4 Experiments
	4.1 Experimental Datasets
	4.2 Experiment Results and Analysis

	5 Conclusion
	References

	GARNet: Graph Attention Residual Networks Based on Adversarial Learning for 3D Human Pose Estimation
	1 Introduction
	2 Related Work
	2.1 3D Human Pose Estimation
	2.2 Graph Attention Networks

	3 Overview
	3.1 Graph Attention Residual Networks
	3.2 Discriminator Network
	3.3 Reprojection Layer and Camera Estimation

	4 Experiment
	4.1 Datasets and Evaluation Protocols
	4.2 Configurations and Result

	5 Discussion
	References

	GPU-based Grass Simulation with Accurate Blade Reconstruction
	1 Introduction
	2 Related Work
	3 Algorithm Details
	3.1 Model Simplification
	3.2 Rendering and Simulation

	4 Implementation and Results
	4.1 Reconstructed Model and Simplification Result
	4.2 Rendering and Simulation Result

	5 Conclusion
	References

	Flow Visualization with Density Control
	1 Introduction
	2 Multi-level Density Control
	2.1 Seeding
	2.2 Grid-Based Filling
	2.3 Streamline Selection
	2.4 Parameter Decomposition
	2.5 Local Density Control

	3 Experiments and Results
	3.1 Isabel Dataset
	3.2 Streak Dataset
	3.3 Comparison with State-of-the-art Methods
	3.4 User Study

	4 Conclusion and Future Work
	References

	DbNet: Double-Ball Model for Processing Point Clouds
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Double-Ball Query
	3.2 Building Features Graph

	4 DbNet Architecture
	4.1 Classification Network
	4.2 Segmentation Network

	5 Experiments
	5.1 Classification
	5.2 Segmentation

	6 Conclusion
	References

	Evolving L-Systems in a Competitive Environment
	1 Introduction
	2 Related Work
	3 Simulations and Results
	3.1 Competition
	3.2 Leaves
	3.3 Structural Strategies
	3.4 Natural Counterparts

	4 Discussion and Future Work
	5 Conclusion
	Appendix 1: Syntax
	Appendix 2: Method
	Appendix 3: Implementation
	References

	ParaGlyder: Probe-driven Interactive Visual Analysis for Multiparametric Medical Imaging Data
	1 Introduction
	2 Medical Background
	3 Related Work
	4 Requirement Analysis
	5 ParaGlyder
	5.1 Data Processing
	5.2 The Stixels View
	5.3 3D Probing Visualization
	5.4 Interaction
	5.5 Similarity Visualization

	6 Results
	6.1 Tumor Detection and Multiparametric Homogeneity Assessment
	6.2 Region Comparison for Tumor Characteristic Assessment
	6.3 Similarity Visualization for Metastases Detection and Feature Selection

	7 Evaluation
	8 Conclusion and Future Work
	References

	3D Geology Scene Exploring Base on Hand-Track Somatic Interaction
	1 Introduction
	2 Related Work
	2.1 Image-Forming Principles of Depth Camera
	2.2 Gesture Recognition
	2.3 Natural Interaction Interface

	3 Gesture Recognition
	3.1 Hardware System
	3.2 Recognition Algorithm
	3.3 Shaking Optimization Algorithm

	4 Game Platform
	4.1 UI Config
	4.2 Scene Construction
	4.3 Hardware Config
	4.4 Keyboard Event Mapping Design

	5 Result Analysis
	5.1 Effects of Shaking Optimization Algorithm
	5.2 Limits of SR300 the Depth Camera

	6 Conclusion
	References

	GHand: A Graph Convolution Network for 3D Hand Pose Estimation
	1 Introduction
	2 Related Work
	2.1 3D Hand Pose Estimation
	2.2 Graph Convolution Method

	3 Methodology
	3.1 Overall Network Architecture
	3.2 Backbone Network
	3.3 GCN Network
	3.4 Loss Function

	4 Experiment Results
	4.1 Dataset and Evaluate Metrics
	4.2 Self-comparisons
	4.3 Comparison with State-of-the-Art Methods

	5 Conclusion
	References

	Bézier Curve as a Generalization of the Easing Function in Computer Animation
	1 Introduction
	2 Bézier Curve as an Easing Function
	2.1 Definition of the Problem
	2.2 Problem Conditions
	2.3 General Solution
	2.4 Inverse Function to at Most a Cubic Polynomial
	2.5 C(x) Function

	3 Result
	4 Practical Approach – Implementation
	5 Tests and Discussion
	6 Summary
	References

	Generating Orthogonal Voronoi Treemap for Visualization of Hierarchical Data
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Distance Function
	3.2 The Sweepline + Skyline Algorithm

	4 Experiments and Comparative Analyses
	5 Conclusions
	References

	CGI’20 Short Papers
	Preserving Temporal Consistency in Videos Through Adaptive SLIC
	1 Introduction
	2 Methodology
	3 Experimental Results
	4 Conclusion
	References

	Efficient Non-fused Winograd on GPUs
	1 Introduction and Related Work
	2 Proposed Method
	2.1 Convert Filter (Step 1)
	2.2 Convert Tiles (Step 2)
	2.3 Dot Product (Step 3)
	2.4 Convert the Result Tile (Step 4)

	3 Evaluation
	4 Conclusion
	References

	ENGAGE Full Papers
	Surface Fitting Using Dual Quaternion Control Points with Applications in Human Respiratory Modelling
	1 Introduction
	2 Related Work
	3 Surface Representation
	4 Static Fitting
	4.1 Unwrapping Point Clouds
	4.2 Fitting Using Gradient Descent

	5 Dynamic Fitting
	6 Respiratory Pattern Analysis
	7 Conclusion
	References

	Deform, Cut and Tear a Skinned Model Using Conformal Geometric Algebra
	1 Introduction
	2 State of the Art
	2.1 State-of-the-Art Representation

	3 Our Algorithms and Results
	3.1 Multivector Form of the Animation Equation
	3.2 Cutting and Tearing Algorithms
	3.3 Implementation Details, Performance and Video Results

	4 Conclusions and Future Work
	References

	The Forward and Inverse Kinematics of a Delta Robot
	1 Introduction
	2 Geometry of a Delta Robot
	3 Inverse Kinematics
	4 Forward Kinematics
	5 The Inverse Jacobian
	6 The Forward Jacobian
	7 Simulation and Verification in Python and Unity3D
	8 Conclusion
	References

	Constrained Dynamics in Conformal and Projective Geometric Algebra
	1 Forces, Moments and Static Equilibrium
	1.1 Forces as Dual Lines in CGA
	1.2 Forces as Lines in PGA

	2 Time Derivatives of Frame Transformations
	3 Momentum and Inertia
	3.1 Screw Momentum
	3.2 The Screw Inertia Tensor

	4 Unconstrained Rigid Body Dynamics
	5 Constrained Dynamics via Virtual Power
	6 Constrained Dynamics by Pinned Multivectors
	7 Pinning Parametric Multivectors Paths
	8 Pinning Linear Functions of Parametric Multivector Paths
	9 Conclusion
	References

	Application of 2D PGA as an Subalgebra of CRA in Robotics
	1 Introduction
	2 Compass Ruler Algebra - CRA
	3 Projective Geometric Algebra Inside CRA
	4 Inverse Kinematics of a Planar Manipulator
	5 Conclusion
	References

	Outline of Tube Elbow Detection Based on GAC
	1 Introduction
	2 Foundations of Geometric Algebra for Conics (GAC)
	3 Python Implementation and Parameter Extraction
	4 Simulation
	5 Conclusion
	References

	Optimal Parenthesizing of Geometric Algebra Products
	1 Introduction
	1.1 Geometric Algebra Products
	1.2 Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Product of Two Multivectors

	3 Optimal Parenthesising of Products
	3.1 Expressions
	3.2 Problem Formulation
	3.3 Minimisation

	4 Discussion and Applications
	5 Conclusion
	References

	Geometric Algebra-Based Multilevel Declassification Method for Geographical Field Data
	1 Introduction
	2 Basic Idea
	3 Methodology
	3.1 Geometric Algebraic Subspace Construction
	3.2 Rotation of Geographical Field
	3.3 Geographic Field Data Declassification and Reversion

	4 Experimental Procedure
	4.1 Geographic Wind Field Data Read and Quantified
	4.2 Generate Multi-layered Key
	4.3 Result

	5 Discussion
	5.1 Space Error and Space Structure Characterization of the Results
	5.2 The Best Regulating Angle Selection Based on Space Correlation

	6 Conclusions or Summaries
	References

	Homomorphic Data Concealment Powered by Clifford Geometric Algebra
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Preliminaries

	2 Basics of Clifford Geometric Algebra C(3,0)
	2.1 Homomorphisms

	3 Multivector Packing Schemes
	3.1 Clifford Eigenvalue Packing Scheme
	3.2 Complex Magnitude Squared Packing Scheme

	4 Concealment Schemes
	4.1 Clifford Sylvester's Equation Concealment (CSEC)
	4.2 Modular Concealment (MC)

	5 Availability
	6 Conclusions
	References

	An Online Calculator for Qubits Based on Geometric Algebra
	1 Introduction
	2 Comparing Classic Computers with Quantum Computers
	3 Description of Quantum Bits
	4 Quantum Register
	5 Computing Steps in Quantum Computing
	6 The NOT-Operation on a Qubit
	7 GAALOPWeb for Qubits
	8 Qubit Algebra QBA
	9 The 2-Qubit Algebra QBA2
	10 Conclusion
	References

	ENGAGE Short Papers
	On Basis-Free Solution to Sylvester Equation in Geometric Algebra
	1 Introduction
	2 The Main Results
	References

	Hyperwedge
	1 Introduction
	2 The Outer Product as Matrix Solver
	3 The n-blades and n Equations
	4 Hyperwedge: The Matrix Solver as Outer Product
	5 An Example of the Gain in 3D CGA
	6 Future Work
	References

	Author Index

